株価が2倍になる確率と1/2になる確率は同じか?

  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る

株価が2倍になる確率と1/2になる確率は同じになるのでしょうか?

株価(リターン)がランダムウォークであると仮定して、株価が2倍になる確率と1/2になる確率を計算してみます。

結論としては、両者は一致しません。

 

株価リターンのモデル化、ランダムウォーク

時点\( t\)における株価を\( S_t\)と表すことにします。現在時点は\( t=0\)と約束しましょう。現在株価は\( S_0\)と表すことができます。

時点\( t\)からほんの少し将来に向けての株価の変化を\( \mathrm{d}S_t\)と表します。\( \mathrm{d}S_t\)を\( S_t\)で割った\( \frac{ \mathrm{d}S_t}{ S_t}\)は、時点\( t\)からほんの少し将来に向けての株価リターンと解釈できます。将来に向けてのリターンですから、時点\( t\)において\( \frac{ \mathrm{d}S_t}{ S_t}\)がどんな値になるかはわからず、ランダムです(\( \frac{ \mathrm{d}S_t}{ S_t}\)は時間パラメタ\( t\)に関連した確率変数です)。

株価リターンはランダムウォークである、とよく言われますが、これを数学的に表すと、

\begin{equation} \begin{split}
\frac{ \mathrm{d}S_t}{ S_t}=\sigma \mathrm{d}z_t
\end{split} \end{equation}

となります。ここで\( \sigma\)は株価リターンの変動性を表すパラメタ(ボラティリティといい、正の定数)、\( \mathrm{d}z_t\)は「ランダムなノイズ」を表しており(標準ブラウン運動の微小増分です)、\(z_t \)は正規分布\( N(0,t)\)に従います。

株価をこのように表したとき、瞬間的な株価リターンがプラスになるかマイナスになるかは事前に予測できず、「瞬間的には」上がるか下がるかは\( \frac{ 1}{2 }\)です。

この設定のもとでは、将来時点\( t\)における株価\( S_t\)は以下のような式で表せます。

\begin{equation} \begin{split}
S_t=S_0 \mathrm{e}^{-\frac{ 1}{ 2}\sigma^2t+\sigma z_t}
\end{split} \end{equation}

この式を導くには「伊藤の公式」という確率解析の公式を利用します。計算方法は以下の記事を参照してください

伊藤の公式を直感的に理解する(追記:ブラック・ショールズモデル)

 

株価が倍になる確率、半分になる確率

さて、ここまでの準備を踏まえて「株価が2倍になる(正確には、上回る)確率」と「株価が1/2倍になる(正確には、下回る)確率」は等しいのか、計算してみましょう。

「株価が2倍になる確率」を「将来時点\( t\)における株価\( S_t\)が、現時点の株価\( S_0\)の2倍を超える(つまり\( S_t>2S_0\)となる確率」と解釈すると、以下のように計算できます。

\begin{equation} \begin{split}
P\left( S_t>2S_0\right)&=P\left( \frac{ S_t}{ S_0}>2\right)\\
&=P\left( \mathrm{e}^{-\frac{ 1}{ 2}\sigma^2t+\sigma z_t}>2\right)\\
&=P\left( -\frac{ 1}{ 2}\sigma^2t+\sigma z_t>\mathrm{ln}2\right)\\
&=P\left( \sigma z_t>\frac{ 1}{ 2}\sigma^2t+\mathrm{ln}2\right)\\
&=P\left(  z_t>\frac{ 1}{ 2}\sigma t+\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
\end{split} \end{equation}

\( z_t\)は正規分布\( N(0,t)\)に従う確率変数です。この確率変数には

\begin{equation} \begin{split}
P\left( z_t>a\right)=P\left( z_t<-a\right)
\end{split} \end{equation}

という性質が成り立つことが知られています。期待値が\( 0\)の正規分布はプラスとマイナスの領域が左右対称であることから来る性質です。この性質を上の式に当てはめると

\begin{equation} \begin{split}
P\left( S_t>2S_0\right)&=P\left(  z_t>\frac{ 1}{ 2}\sigma t+\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&=P\left(  z_t<-\frac{ 1}{ 2}\sigma t-\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&=P\left(  -\frac{ 1}{ 2}\sigma t+z_t<-\sigma t-\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&=P\left(  -\frac{ 1}{ 2}\sigma^2 t+\sigma z_t<-\sigma^2 t-\mathrm{ln}2\right)\\
&=P\left(  \mathrm{e}^{-\frac{ 1}{ 2}\sigma^2 t+\sigma z_t}<\mathrm{e}^{-\sigma t}\mathrm{e}^{\mathrm{ln}\frac{ 1}{ 2}}\right)\\
&=P\left(  \frac{ S_t}{ S_0}<\frac{ 1}{ 2}\mathrm{e}^{-\sigma t}\right)\\
&=P\left(  S_t<\frac{ 1}{ 2}S_0\mathrm{e}^{-\sigma t}\right)\\
\end{split} \end{equation}

が成り立ちます。

「株価が1/2倍(を下回る)になる確率」は\( P\left(S_t<\frac{ 1}{ 2}S_0 \right)\)ですから「株価が2倍(を上回る)になる確率」とは一致しません。\(\mathrm{e}^{-\sigma t} \)が掛かっているのが余計です。

つまり、株価リターンがランダムウォークであっても、「株価が2倍(を上回る)になる確率」と「株価が1/2倍(を下回る)になる確率」は一致しません。

 

どちらの確率のほうが大きいのか

「株価が2倍(を上回る)になる確率」と「株価が1/2倍(を下回る)になる確率」は一致しないことはわかりましたが、どちらの確率のほうが大きいのでしょうか。

「株価が2倍(を上回る)になる確率」の途中経過を工夫すると、

\begin{equation} \begin{split}
P\left( S_t>2S_0\right)&=P\left(  z_t>\frac{ 1}{ 2}\sigma t+\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&=P\left(  z_t<-\frac{ 1}{ 2}\sigma t-\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&=P\left(  -\frac{ 1}{ 2}\sigma t+z_t<-\sigma t-\frac{ 1}{ \sigma}\mathrm{ln}2\right)\\
&<P\left(  -\frac{ 1}{ 2}\sigma^2 t+\sigma z_t<-\mathrm{ln}2\right)\\
&=P\left(  S_t<\frac{ 1}{ 2}S_0\right)\\
\end{split} \end{equation}

という不等式が導けます。つまり「株価が2倍(を上回る)になる確率」よりも「株価が1/2倍(を下回る)になる確率」のほうが大きいです。

 

二つの確率が等しくなる条件

ただし、将来時点\(t \)がごく小さければ、両者は近似します。

\( t\)が十分小さい時、

\begin{equation} \begin{split}
P\left( S_t>2S_0\right)&=P\left(  S_t<\frac{ 1}{ 2}S_0\mathrm{e}^{-\sigma t}\right)\\
&\approx P\left(  S_t<\frac{ 1}{ 2}S_0\right)
\end{split} \end{equation}

が成り立ちます。

つまり、ごく短期間の話をするならば「株価が2倍(を上回る)になる確率」と「株価が1/2倍(を下回る)になる確率」は近似し、\( t\to0\)の極限で両者は一致します。

 

注意

この記事では「瞬間的な株価リターンが標準ブラウン運動の微小増分の意味でランダムウォークである」という前提のもとで、「株価が2倍(を上回る)になる確率」と「株価が1/2倍(を下回る)になる確率」は一致しない(後者のほうが大きい)ことを示しました。

当然ながら、前提が変われば結論は変わります。

例えば「将来のある時点までの株価リターンがランダムウォークである」という仮定をおけば、結論は変わります(それが学術的に広く受け入れられているかは別として)。

投資理論において「唯一絶対の正解はない」ことに注意してください。

 

参考文献

  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る

SNSでもご購読できます。

コメントを残す

*