Uncategorized

test

This post is for testing.

身軽でいることの重要性、あるいはリアル・オプション価値について

こんにちは、毛糸です。

仕事や日常生活でイベントが重なり、猫の手も借りたくなるほど忙しいときには、誰しも「こんなに予定を入れるんじゃなかった!」と後悔することがあるでしょう。

ときには忙しすぎて、何かを犠牲にせざるを得なかったり、予定をズラしてもらうなどしてその場をしのぐこともあります。

もちろん、予定が上手く回っていれば、限りある時間を有効活用できた、と満足できるわけですが、ひとたび歯車が狂うと、いろいろなところでひずみを生じさせます。

やや形式的に表現するなら、将来へのコミットメントは、ハイリスク・ハイリターンである、ということでしょう。

逆に、コミットメントを少なくすること、つまり身軽でいることを徹底していれば、その都度時間の使い方を考えねばならない代わりに、予定に忙殺されることなく過ごすことが出来ます。

身軽でいるということは、意思決定に柔軟性をもたせることができる、と考えることが出来ます。

さて、ビジネスにおいて、意思決定に柔軟性をもたせることは、企業価値を高めることが知られています。

意思決定の柔軟性は「リアル・オプション」と呼ばれ、昨今の激しい経済情勢においては重要な考え方とされています。

将来にコミットしすぎず、身軽でいるということは、自分の時間にリアル・オプション価値をもたせることである、とも考えられます。

もちろん、意思決定に柔軟性をもたせるということは、意思決定の都度かかるコストが余計にかかるということでもありますから、常に良いことであるとは限りません。

しかし、予定を立てすぎないことから生じるリアル・オプション価値を大事にするというのは、日々の暮らしにおいて重要な考え方であるように思います。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”モンテカルロ法によるリアルオプション分析事業計画の戦略的評価(CD-ROM付き)”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/411k%2BZfhi8L.jpg”,”/31u4w-ZD%2BGL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%A2%E3%83%B3%E3%83%86%E3%82%AB%E3%83%AB%E3%83%AD%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8B%E3%83%AA%E3%82%A2%E3%83%AB%E3%83%BB%E3%82%AA%E3%83%97%E3%82%B7%E3%83%A7%E3%83%B3%E5%88%86%E6%9E%90%E2%80%95%E4%BA%8B%E6%A5%AD%E8%A8%88%E7%94%BB%E3%81%AE%E6%88%A6%E7%95%A5%E7%9A%84%E8%A9%95%E4%BE%A1-CD-ROM%E4%BB%98%E3%81%8D-%E5%A4%A7%E9%87%8E-%E8%96%AB/dp/4322121802″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”1MvCB”});

理論・モデルの意義と、理論と現実の差異を知ったあとにとるべき行動

こんにちは、毛糸です。

先日の記事で、主要な株価指数から計算する日次リターンが、正規分布に従わないことを確かめました。
>>日本株式、米国株式、欧州株式、全世界株式の日次リターンが正規分布ではなかった件

リターンが正規分布に従うというのは、ファイナンス(金融工学)においてしばしば仮定されることですが、現実には成り立っていないということです。

この記事を見て「ファイナンス理論は嘘だった!」と受け取る方もいたようです。

しかし、このような態度は学術的に価値あるものではないように思います。

本記事では「リターンは正規分布でない」とわかったあとに我々が考えるべきことは何か、ファイナンスの数理モデルにおいて正規分布を仮定していたのにはどういう意味があったのかということについて考えてみたいと思います。

正規分布の仮定と現実の分布の差異

ファイナンス理論ではしばしば、資産価格のリターンは正規分布に従うと仮定されます。

分散投資の理論的根拠とも言われるマーコウィッツの平均分散分析や、シャープらのCAPM(資本資産価格モデル)も、リターンが正規分布に従うときに成り立つ命題です。

また、ファイナンスの数理分析が広がる契機となったブラック・ショールズモデルも、資産の瞬間的な収益率が正規分布に従うという性質を持ちます。

マートンの最適ポートフォリオ理論も、ブラック・ショールズモデルと同様、瞬間的な収益率が正規分布に従うような資産を考えるときにエレガントな結果が得られることがわかっています。

このように、「リターンが正規分布に従う」というのは、教科書的なファイナンスの世界ではスタンダードな仮定であり、その前提を基に膨大な研究成果が蓄積されています。

ところが、下記記事で分析している通り、主要な株価指数の日次リターンは、正規分布に従っていません。
>>日本株式、米国株式、欧州株式、全世界株式の日次リターンが正規分布ではなかった件

 

理論の前提が現実を捉えきれていないというこの状況を「理論の敗北」と捉える人もいるでしょう。

しかし、そういった考え方は果たして適切なのでしょうか。

数理モデルを考える意味とは

この世の現象を完全に説明できる「万能の理論」などというものはありません。

縮尺1:1の地図は役に立たない

というのは、数理モデルを扱うを行う人がよく使う格言ですが、現実を捨象し分析に関係ある部分を抽象化して考える「モデル分析」を行う場合には、どうしても現実と不整合な部分が出てこざるを得ません。

ファイナンスにおける正規分布の仮定も、こうした「抽象化」の産物です。

つまり、現実にはリターンが正規分布に従っていないことはわかっているけれども、ファイナンスにおいて重要な意味をもつ「リスク」に関する洞察が得られやすく、数学的にも扱いやすいため、正規分布を仮定しているのだということです。

分析したい対象によって、捨象すべき部分は思い切って捨て去る、そうすることでシャープな結論が得られ、世界を理解することにつながります。

リターンが正規分布に従わないという現実はたしかにありますが、リターンの分布という特徴を敢えて捨象することで、ファイナンスは多くの発見を生み出してきたということです。

理論の前提が現実とが整合していなくとも、分析対象について良い考察が得られれば価値がある。

これが科学的態度です。

理論が現実と違うとわかった私たちが、このあと考えるべきこと

リターンの正規性という理論の前提は、現実には成り立っていない。

それを知った私たちは、その後どんな態度をとるべきでしょうか。

間違っても「理論の前提がおかしい!既存理論は無意味だった!」と吹聴してはいけません。

理論はあくまで分析に必要なもののみをすくい取り、関係ない部分を捨象しているので、モデルと現実が乖離するのは当たり前です。

悲しいことに、投資家の間では、過去何度も、こうした建設的でない批判が繰り返されてきたようです。
参考記事>>分散投資を批判した後の対案がそれ以上に酷い法則-梅屋敷商店街のランダム・ウォーカー(インデックス投資実践記)

現実とモデルが違うなんてことはみんなわかっていて、わかっていてなお有用だから、使われているわけです。

理論と現実の差異に気づいたあとに取るべきスタンスは

  1. 理論と現実の差を受け入れ、単純化した世界(モデル)で成り立つ命題を受け入れる
  2. 理論と現実の差を埋めるような、新たな手法やモデルを開発する
のいずれかであると私は考えています。

もし標準的なモデルが自分の分析において不都合なら、自分に必要なモデルを自分で作ればいいだけの話です。

事実、多くの研究者が、資産リターンが正規分布に従わない場合に成り立つ定理をたくさん発見しています。
たとえば下記の書籍では、資産リターンが正規分布に従わない場合においても、平均分散分析やCAPMがなお成立することを証明しており、リターンが正規分布に従わない場合にも分散投資は意味のある投資手法であることがわかります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”金融経済学の基礎 (ファイナンス講座)”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51j7faeOtGL.jpg”,”/51j7faeOtGL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E9%87%91%E8%9E%8D%E7%B5%8C%E6%B8%88%E5%AD%A6%E3%81%AE%E5%9F%BA%E7%A4%8E-%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E8%AC%9B%E5%BA%A7-%E6%B1%A0%E7%94%B0-%E6%98%8C%E5%B9%B8/dp/4254545525″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”JJh4M”});

理論と現実の(あって当たり前の)差異について、批判するのではなく、理論の価値を認識し、必要なら自分でよりよい理論を構築することが、社会的に意味のある態度だと思います。

まとめ

ファイナンス理論で仮定される「リターンの正規性」は、実際には成り立っていません。

しかしこれは「理論の敗北」ではありません。

理論は、現実の問題の本質的な部分を抽象化して取り出し、その他の部分はきっぱり単純化することで、深い洞察を得ており、「リターンが正規分布に従う」という仮定も、こうした単純化の一環です。

理論と現実が異なっていると気づいたなら、その差異を受け入れるか、より現実的なモデルを自分で作ってみるのが、社会的に意義ある態度です。

日本株式、米国株式、欧州株式、全世界株式の日次リターンが正規分布ではなかった件

こんにちは、毛糸です。

先日、ファーマ−フレンチの3ファクターモデルのデータが無料で手に入るという記事を書きました。
>>ファーマ-フレンチの3ファクターモデルのデータを入手する方法


ここで手に入るデータには、市場ポートフォリオのリターンデータが含まれています。

本記事ではこの市場ポートフォリオのリターンデータが、ファイナンスでしばしば仮定される「正規分布」に従わないことを確かめてみます。

日本、アメリカ、ヨーロッパ、全世界の市場ポートフォリオ

ファーマ−フレンチの3ファクターモデルに用いるヒストリカルデータには、市場ポートフォリオの日次リターンが含まれます。
市場ポートフォリオとは、各地域の時価加重平均ポートフォリオのことです。
フレンチ教授のwebページから取得できるデータの中で、Mkt-RFというのが市場ポートフォリオのリターンと安全資産リターン(米国短期証券)の差を表しており、別にあるRFの列を足してやることで、市場ポートフォリオのリターンが計算できます(通貨は米ドル建てです。
市場ポートフォリオは各地域の株式市場の時価総額を反映した指数ですから、日本、アメリカ、ヨーロッパ、全世界の各市場の株式指数と考えて良いでしょう。
データは1990/7/2から2019/4/30までの7,522日分あります。
以下では各地域の市場ポートフォリオデータをもとに、株価の日次リターンの平均(期待リターン)、標準偏差(リスク)、歪度と尖度を計算し、日次リターンが正規分布に従うかを確かめます。
本記事の分析手法は、下記記事を参考にしています。
分析には統計プログラミング言語Rを用います。Rの使い方や投資理論への活用については、下記書籍が参考になります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”x1j9Q”});

日本株式のリターン、リスク、正規性

mean()関数を使って計算した日本株式の日次期待リターンは0.01%、1年250営業日を乗じて計算する年率換算の期待リターンは3.8%でした。
sd()関数を使って計算した日本株式の日次リスクは1.37%、1年250営業日の平方根を乗じて計算する年率換算のリスクは21.7%でした。
分布の偏りを示す歪度は0.12(正規分布ならば0)、分布の尖り具合を示す尖度は 8.2(正規分布ならば3)でした。
データが正規分布に従うかを示すシャピロ・ウィルク検定を実施したところ、「正規分布に従う」という帰無仮説は棄却され、日本株式の日次データは統計的には正規分布に従わないことがわかりました。
データをQ-Qプロットしてみたところ、正規分布であればデータは一直線に並ぶべきところ、以下のようになりました。

米国株式のリターン、リスク、正規性

mean()関数を使って計算した日本株式の日次期待リターンは0.04%、1年250営業日を乗じて計算する年率換算の期待リターンは10.5%でした。
sd()関数を使って計算した日本株式の日次リスクは1.06%、1年250営業日の平方根を乗じて計算する年率換算のリスクは16.8%でした。
分布の偏りを示す歪度は-0.21(正規分布ならば0)、分布の尖り具合を示す尖度は 11.6(正規分布ならば3)でした。
データが正規分布に従うかを示すシャピロ・ウィルク検定を実施したところ、「正規分布に従う」という帰無仮説は棄却され、米国株式の日次データは統計的には正規分布に従わないことがわかりました。
データをQ-Qプロットしてみたところ、正規分布であればデータは一直線に並ぶべきところ、以下のようになりました。

欧州株式のリターン、リスク、正規性

mean()関数を使って計算した日本株式の日次期待リターンは0.03%、1年250営業日を乗じて計算する年率換算の期待リターンは3.8%でした。
sd()関数を使って計算した日本株式の日次リスクは1.11%、1年250営業日の平方根を乗じて計算する年率換算のリスクは8.1%でした。
分布の偏りを示す歪度-0.14(正規分布ならば0)、分布の尖り具合を示す尖度は 10.5(正規分布ならば3)でした。
データが正規分布に従うかを示すシャピロ・ウィルク検定を実施したところ、「正規分布に従う」という帰無仮説は棄却され、欧州株式の日次データは統計的には正規分布に従わないことがわかりました。
データをQ-Qプロットしてみたところ、正規分布であればデータは一直線に並ぶべきところ、以下のようになりました。

全市場株式のリターン、リスク、正規性

mean()関数を使って計算した日本株式の日次期待リターンは0.03%、1年250営業日を乗じて計算する年率換算の期待リターンは7.8%でした。
sd()関数を使って計算した日本株式の日次リスクは0.87%、1年250営業日の平方根を乗じて計算する年率換算のリスクは13.8%でした。
分布の偏りを示す歪度-0.25(正規分布ならば0)、分布の尖り具合を示す尖度は 10.7(正規分布ならば3)でした。
データが正規分布に従うかを示すシャピロ・ウィルク検定を実施したところ、「正規分布に従う」という帰無仮説は棄却され、全世界株式の日次データは統計的には正規分布に従わないことがわかりました。
データをQ-Qプロットしてみたところ、正規分布であればデータは一直線に並ぶべきところ、以下のようになりました。

まとめ

フレンチ教授が公開している市場ポートフォリオの日次データを使って、日本、アメリカ、ヨーロッパ、全世界の株式リターンの分析を行いました。
その結果、いずれの地域でも、日次リターンは正規分布に従わないことがわかりました。
ファイナンスの多くの研究ではリターンは正規分布に従うと仮定されていますが、実際のデータはそうではないようです。
本ブログでたびたび登場する「投資シミュレーションプログラム」はリターンが正規分布に従うことを仮定していますので、本記事の結果を重く受け止めるならば、改善する必要があります。
この点については、近く改良版を公開しますので、ご期待下さい。

ファーマ-フレンチの3ファクターモデルのデータを入手する方法

こんにちは、毛糸です。

本記事ではファーマ-フレンチの3ファクターモデルを使うにあたり必要となる、市場ポートフォリオ、時価総額(SMB)ファクター、簿価時価比率(HML)ファクター、無リスク金利のデータを入手する方法を解説します。

上記データは、ケネス・フレンチ教授のホームページから無料で、1990年からの長期にわたる時系列データが手に入ります。

ファーマ-フレンチの3ファクターモデル(Fama-French three factor model)のヒストリカルデータ

ファーマ-フレンチの3ファクターモデル(以下、FF3)に必要なデータは、ケネス・フレンチ教授ホームページのDATA LIBRARY(リンクはこちら)から、無料で取得できます。
上記ページの「Developed Market Factors and Returns」には、全市場ベースのFF3データのほか、北米、ユーロ圏、日本などの地域別のデータが提供されています。
[Daily]データでは、1990年7月2日以降の日次データが提供されています。

各ファイルは、市場ポートフォリオ、時価総額(SMB)ファクター、簿価時価比率(HML)ファクター、無リスク金利のデータからなります。

このほか、上記サイトではファーマ-フレンチの5ファクターモデルに必要な収益性ファクターと投資ファクターや、モメンタムファクターも提供されています。

これらデータを使えば、Rなどで簡単に投資分析をすることが可能です。

金融データの分析方法については、下記の書籍が参考になります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”Ky0Az”});

ビットコインFX|期待リターンと熱狂する理由

こんにちは、毛糸です。

2017年頃の仮想通貨バブルは「億り人」という言葉を生むほど、高い収益機会として注目され、一攫千金の夢を見させてくれました。
>>ビットコインはバブルである

仮想通貨バブルの狂乱を演出したのが、ビットコインFXに代表されるレバレッジつき証拠金取引です。
本記事では、ビットコインFXの期待リターンがプラスと考えられることを説明し、それがビットコインFXの人気となったこと、「レバレッジ」が重要な意味をもっていたことを説明します。

通貨FXの期待リターンは0

通常の外国為替証拠金取引(以下、通貨FX)は、理論的には期待リターンが0であると考えられています。
通貨変動の期待リターンと、国内外の金利差に相当するスワップポイントが相殺されるため、一定の仮定のもとでは期待リターンになる0の「フェアゲーム」です。
為替レートというのは、国内と海外の金利運用による収益を予見して決まっているため、たとえ外貨建ての金利がとても高く魅力的に見えても、通貨変動によってリターンが打ち消されます。
期待リターンが0ということは、通貨FXでレバレッジをかけても、リスクばかり大きくなるだけで期待リターンはあがりません。
したがって「理論的には」通貨FXでレバレッジをかける意味はありません。

FXや外貨預金の期待リターンに関しては、下記書籍に説明があります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”難しいことはわかりませんが、お金の増やし方を教えてください”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/61KYTun14uL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E5%9B%B3%E8%A7%A3%E3%83%BB%E6%9C%80%E6%96%B0-%E9%9B%A3%E3%81%97%E3%81%84%E3%81%93%E3%81%A8%E3%81%AF%E3%82%8F%E3%81%8B%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%E3%81%8C%E3%80%81%E3%81%8A%E9%87%91%E3%81%AE%E5%A2%97%E3%82%84%E3%81%97%E6%96%B9%E3%82%92%E6%95%99%E3%81%88%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84%EF%BC%81-%E5%B1%B1%E5%B4%8E%E5%85%83-ebook/dp/B077F4SK36″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”XK5hS”});

ビットコインFXに金利平価は働かない

ビットコインFXも同じく期待リターンは0なのでしょうか。
ビットコインが通常の通貨(いわゆるフィアット)と異なる点は、ビットコインが通貨圏を形成しているとはいい難く、ビットコイン建ての運用を行っているプレイヤーが通貨ほど多くない点です。
ビットコイン建て債券の発行がないわけではありませんが、ビットコインとフィアットの交換レートを考慮し裁定(アービトラージ)が起こるほど、自由かつ頻繁に行われているわけではありません。
したがって、通貨FXの期待リターンが0であるという「理論」の前提が、ビットコインFXでは成り立っていない可能性が大いにありえます。
ややテクニカルな話ですが、通貨FXの期待リターン0というのは、金利平価と呼ばれる理論に基づいており、これには通貨の売買と各国での自由な運用が前提となっています。
ビットコインはこの前提が成り立っていないため、ビットコインFXの期待リターンは0とはかぎりません。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]新証券投資論II”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51qz2IyTafL.jpg”,”/31HIJwDY-hL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E6%96%B0%E3%83%BB%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E8%AB%96II-%E4%BC%8A%E8%97%A4-%E6%95%AC%E4%BB%8B/dp/4532133734″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”kfkhx”});

ビットコインFXの期待リターン

ビットコインFXの期待リターンは0ではなく、おそらくは正であると考えられます。
ビットコインFXには(取引所にもよりますが)スワップポイントがあり、売り買いどちらのポジションであっても、一定率を支払うような取り決めになっていることが多いようです。
上記サイトの例では、一日あたり建玉金額の0.04%が手数料として徴収されます。
一方、ビットコイン価格のヒストリカルデータから算出した日次リターンは0.28%ほどでしたので、スワップポイント(と言う名の手数料)を控除してもなお、統計上プラスのリターンが得られることになります。

ビットコインFXの狂乱の理由

期待リターンがプラスであるということは、ビットコインFXでレバレッジをかけることによって、期待リターンを高められます。
期待リターン0の通貨FXであればは、何倍レバレッジをかけても期待リターン0のままですが、ビットコインFXの期待リターンが正であれば、レバレッジをかける意味もあります。
ビットコインFXがあれほど人気を博した理由の一つは、通貨FXとは異なり、レバレッジが言葉通り収益に「てこ」を加えられるためだったのかも知れません。
もちろん、レバレッジで高まるのはリターンだけではありません。
レバレッジをかけることによりリスクも相当高いものとなり、またレバレッジの本質は他人資本を借りてくること(つまり借金)なので、運が悪ければ破産することもあります。
レバレッジのリスクに関しては、下記の記事が参考になります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ガチ速FX 27分で256万を稼いだ鬼デイトレ”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/51vIopi1L0L.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%82%AC%E3%83%81%E9%80%9FFX-27%E5%88%86%E3%81%A7256%E4%B8%87%E3%82%92%E7%A8%BC%E3%81%84%E3%81%A0%E2%80%9C%E9%AC%BC%E3%83%87%E3%82%A4%E3%83%88%E3%83%AC-%E5%8F%8A%E5%B7%9D%E5%9C%AD%E5%93%89/dp/4827211817″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”bLq6y”});

まとめ

通貨FXは理論上、期待リターンが0ですが、ビットコインFXは通貨FXで成り立つ前提が成り立たないため、期待リターンが0とは限りません。
実際のデータから推計した期待リターンは、スワップポイントを控除してもプラスであり、ビットコインFXの期待リターンは正であると考えられます。
この場合、レバレッジをかけることで期待リターンは増幅され、これが2017年のビットコインバブルの狂乱の一原因であったと思われます。
しかし、レバレッジをかけることでリスクも激増し、破産確率が増すことには十分注意が必要です。

Rで多次元正規分布に従う乱数を生成する(年金運用の例題付き)

こんにちは、毛糸です。

ファイナンス(金融工学)において、正規分布は資産の収益率をモデル化するために頻繁に用いられます。

投資対象となる資産は通常1つだけではなく、複数資産を扱いたいことも多いですから、その場合には多次元の正規分布を考えなければなりません。

本記事では統計プログラミング言語Rで多次元正規分布に従う確率変数ベクトルを生成する方法について説明します。

ライブラリ「MASS」による多次元(多変量)正規分布の乱数発生

多次元(多変量)正規分布に従う確率変数ベクトルは、多変量解析用パッケージのMASSのmvrnorm()を使って発生させることが出来ます(公式リファレンスのPDFはこちら)。

mvrnorm()は、発生させる確率変数ベクトルの個数n、期待値ベクトルmu、分散共分散行列Sigmaを与え、n組の確率変数ベクトルを返す関数です。

例えば、( mu=(1,1))、分散共分散行列( Sigma=left(  begin{array}{cc}1&0\0&1end{array}right))の2次元正規分布に従う確率変数( (x_1,x_2))を発生させるには、以下のように記述します。

#MASSライブラリを読み込む
library(MASS)
#期待値ベクトル
mu0<-c(1,1)
#分散共分散行列
Sigma0<-rbind(
  c(1,0),
  c(0,1)
)
#多次元正規分布に従う確率変数ベクトルを1組発生
mvrnorm(1,mu0,Sigma0)
#[1]  1.8590647 -0.6548381

参考>> 元データ分析の会社で働いていた人の四方山話_多変量正規分布

例題:年金資産の収益率

MASSライブラリを用いた多次元正規分布の乱数発生方法がわかったところで、応用例を考えてみましょう。
私たちの年金運用のシミュレーションです。
年金積立金は4つのリスク資産に投資されており、その収益率は正規分布に従うと仮定されています。
期待収益率と分散、相関係数の推定値は公表されており、これに基づいて投資が行われています。

(出所:https://www.gpif.go.jp/gpif/portfolio.html)

年金の期待収益率(投資4資産+余剰資金の短期資産と賃金上昇率の6次元)と分散共分散行列から、年金資産の収益率を乱数として発生させてみましょう。

分散共分散行列( Sigma)については、標準偏差ベクトル( S=(sigma_1,cdots,sigma_n))と相関係数行列( P)を用いて

[ begin{split}
Sigma=diag(S) cdot P cdot diag(S)
end{split} ]で表せます。ただし( diag(S))は( S)を対角成分に持つ対角行列で、「( cdot)」は通常の行列積(Rでは%*%)です。

#各資産クラスの期待リターン
mu<-c(2.6/100, 6.0/100, 3.7/100, 6.4/100, 1.1/100)
#各資産クラスの分散(標準偏差の2乗)
sigma<-c(0.047,0.251,0.126,0.273,0.005)
#相関行列
Rho<-rbind(
    c(1,-0.16,0.25,0.09,0.12),
    c(-0.16,1,0.04,0.64,-0.1),
    c(0.25,0.04,1,0.57,0.15),
    c(0.09,0.64,0.57,1,-0.14),
    c(0.12,-0.1,-0.15,-0.14,1))
#分散対角行列
sigma_diag<-diag(sigma)
#分散共分散行列
Sigma<-sigma_diag%*%Rho%*%sigma_diag
#多次元正規分布の発生
X <- mvrnorm(10000, mu, Sigma)

結果の確認

こうして得られた6次元確率変数ベクトルの1万個について、標本平均と標本標準偏差を計算すると、大数の法則により、パラメタとして与えたmuとsigmaに近くなるはずです。

Xは、行にサンプル数n、列に確率変数ベクトルの要素が並んでいます。列に対して平均meanと標準偏差sdを適用するには、apply(X,MARGIN=2,mean)という関数を使います。MARGIN=1はXの「列」方向に関数を適用するという意味です。
参考>>24. apply() ファミリー

#各要素の平均を計算(経済中位ケース)
apply(X,2,mean)*100
#[1] 2.591798 5.739046 3.773379 6.390514 1.097378 2.793776
#各要素の標準偏差を計算
apply(X,2,sd)*100
#[1]  4.6795340 25.1717768 12.6962985 27.2644081  0.5005285  1.9114364

いずれも理論値に近い値になっています。

まとめ

MASSライブラリを用いて多次元正規分布に従う確率変数ベクトルを生成する方法をまとめました。
多次元正規分布はファイナンスにおいてよく目にするため、しっかり使いこなせるようにしておきましょう。

外国債券は投資に値するか?分散投資、期待リターン、金利平価からの考察

こんにちは、毛糸です。

個人の資産運用は、分散投資が基本と言われます。

特に、異なる値動きをする資産クラスに分散投資することが重要とされ、国内と外国の株式と債券の4資産は「伝統的4資産」と呼ばれています。

しかし、この伝統的4資産のうち、外国の債券に関しては、実は組み入れる必要はないのではないか?という意見があります。

本記事ではこの意見について深掘りします。

ある一定の条件のもとでは「外国債券は組入不要」であることがわかりますが、しかしその条件が現実に成り立っているかは微妙なので、実際には外国債券にも意味があるということを説明します。

外国債券必要論

国内と外国の株式と債券、計4つの資産クラスは、値動きのパターンが異なっており、これらに分散投資することでリスクを低減できるとされています。

値動きのパターンが異なるもの (統計学の言葉で言えば、相関係数が小さいもの)を組み合わせることにより、ポートフォリオのリスクは個々の資産のリスクの合算よりも小さくなります。

これを「分散効果」といい、確率論によって数学的に証明できます。

多数の資産に分散投資することが最善であるというのは、ノーベル経済学賞を受賞したマーコウィッツによる平均分散分析に始まる「現代ファイナンス論」の結論として有名です。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ウォール街のランダムウォーカー原著第11版株式投資の不滅の真理”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51j3XxuLcML.jpg”,”/51L5VguO16L.jpg”,”/51pXH1cT26L.jpg”,”/51qzhDA8N8L.jpg”,”/516KF7nD4ML.jpg”,”/51RqxJ5YdzL.jpg”,”/41Z4TQLguaL.jpg”,”/41RDCEkVSWL.jpg”,”/51ZC6wiROQL.jpg”,”/416UAK2gjbL.jpg”,”/51COLQfOYZL.jpg”,”/41wAkIpxalL.jpg”,”/517pu9qvoaL.jpg”,”/51Qd00xstPL.jpg”,”/41a6WwcjPUL.jpg”,”/41whOykxo9L.jpg”,”/51ZYk6jqWTL.jpg”,”/51JXyzvOypL.jpg”,”/51Cx1OLwZwL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%82%A6%E3%82%A9%E3%83%BC%E3%83%AB%E8%A1%97%E3%81%AE%E3%83%A9%E3%83%B3%E3%83%80%E3%83%A0%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AB%E3%83%BC%E3%80%88%E5%8E%9F%E8%91%97%E7%AC%AC11%E7%89%88%E3%80%89-%E2%80%95%E6%A0%AA%E5%BC%8F%E6%8A%95%E8%B3%87%E3%81%AE%E4%B8%8D%E6%BB%85%E3%81%AE%E7%9C%9F%E7%90%86-%E3%83%90%E3%83%BC%E3%83%88%E3%83%B3%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AD%E3%83%BC%E3%83%AB/dp/4532356873″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”P0miQ”});

外国債券不要論

分散投資投資を享受するためには、外国債券の組入には意味がありそうです。

しかし、投資信託によるインデックス投資の指南書『お金は寝かせて増やしなさい』には、外債について以下のようなネガティブなコメントが書かれています。

一見、魅力的に見える高金利の外貨は、長期的には通貨自体が安くなって金利差は相殺されてしまうという考え方があります(金利平価説といいます)。この考え方に従うと、外国債券クラスの期待リターンは、結局、国内債券の期待リターンと同じということになります。

つまり、外債の高利回りは、運用通貨が安くなることで相殺されると考えられるため、為替リスクを取る価値がないのでは、ということです。

実は、金利(債券)と通貨は、両者を同時に考慮して、それぞれの価格(レート)が決まります。

ややテクニカルな話になりますが、通貨の先渡価格とスポット・レートの関係式「フォワード・パリティ」と、国内外の金利と先渡価格の関係式「カバー付き金利平価」が成り立てば、金利利益は通貨損失とちょうど等しくなり、相殺されます。この関係を「カバーなし金利平価」といいます。
参考>>FXの期待リターン、億り人になれる確率、破産する確率

したがって、理論上は、海外無リスク債券の収益率は、国内の無リスク債券の収益率と一致するはずなので、海外の高金利な無リスク債券に投資することに意味はない(為替リスクがあるぶんネガティブ)ということになります。

外国債券は投資に値しない、という説明に対する反論

ただし、上記のような「外国債券投資は無意味」という主張には、いくつか前提があります。

1つは「カバーなし金利平価が実際に成り立つ」ということ。

もう1つが「外国債券は、為替影響を除いて、国内債券と同じリスクである」ということです。

カバーなし金利平価は成り立つか?

「フォワード・パリティ」と「カバー付き金利平価」が成り立てば「カバーなし金利平価」が成り立ち、外国無リスク債券の期待リターンは国内無リスク債券の期待リターンと一致します。

カバー付き金利平価については、実際にかなり正確に成り立っているらしいのですが、実はフォワード・パリティが成り立つかについては諸説あります。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]新証券投資論II”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51qz2IyTafL.jpg”,”/31HIJwDY-hL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E6%96%B0%E3%83%BB%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E8%AB%96II-%E4%BC%8A%E8%97%A4-%E6%95%AC%E4%BB%8B/dp/4532133734″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”Ums8t”});

フォワード・パリティは、実は投資家がリスクに対してリターンを要求しないという仮定しないと成り立たないので、おそらく現実にはあまり成り立っておらず、したがって金利・為替リターンはゼロではないと考えられます。

したがって、「外国債券の期待リターンは国内債券と同じで、為替リスクを余計に取っている」というのは、正しくない可能性があります。

外国債券投信は為替影響を除けば国内債券と同じリスク?

仮にカバーなし金利平価が成り立ち、金利と通貨が相殺されるとしても、異なるリスクを持つ資産は当然ながらリターンも異なります。

つまり、安全資産に近い国内債券と、国家レベルで破綻する可能性がある外国の債券とでは、内在するリスクが異なるため、通貨変動考慮後のリターンも異なるのではないかいうことです。

たとえば、日本の国債とギリシャの国債が通貨変動を考慮したら同じ、と言われても、ギリシャ国債を通貨ヘッジ付きで買う人は少ないのではないでしょうか。

もし、外国債券インデックスに連動する投資信託が無リスク資産にのみ投資しているのであれば、通貨変動調整後のリターンは国内の無リスク債券のリターンに近いはずですが、海外の国債・債券には相応のクレジットスプレッドが載っていると考えられ、これを考慮すると外国債券の通貨変動考慮後のリターンが国内債券のリターンと一致するとは限りません。

新興国債券の高いパフォーマンス

事実、新興国債券インデックス投信は過去優れたリターンを上げています。

「通貨変動考慮後での外国債券の期待リターンは国内債券とおなじくらい」と主張するには新興国債券のリターンが「ありえる話」であることを統計的に示す必要があります。

これについては深く検証していませんので、今後の課題とします。

まとめ

「外国債券は投資に値しない」という主張についていくつかの視点から考察してみました。

今回得た結論は、

  • いくつかの仮定に基づけば理論上外国債券の超過リターンはなさそう
  • この「いくつかの仮定」が怪しい
  • 外国債券にクレジットスプレッドが載っていれば外債投資の意味はある
  • 新興国債券では事実、上手く行っていた
ということです。
インデックスファンドへの積立投資をリポートする【投信定点観測】では、外国債券インデックスファインドにも投資を行っています。
今回の考察が妥当かどうかは、自分の投資成果も踏まえて考えてみたいと思います。

老後に2,000万は実現可能なのか?家計調査を眺めてわかったこと

こんにちは、毛糸です。

2019年6月3日、金融庁金融審議会 市場ワーキング・グループが、『高齢社会における資産形成・管理』と題する報告書を公表しました。
参考>>金融審議会 「市場ワーキング・グループ」報告書 の公表について

本報告書では、日本の高齢化に伴う資産管理の問題点を浮き彫りにしつつ、資産寿命を伸ばし老後を豊かに暮らすための指針が示されています。
そのなかで、老後世帯の月々の赤字額に関する統計調査から「老後までに2,000万円の資産形成が必要」との指摘がなされました。
この指摘について、麻生財務大臣は「表現自体は不適切」と述べましたが、しかし事実として多くの国民を驚かせているようです。
本記事では「老後までに2,000万」という数字が、実現可能な水準なのか、総務省家計調査を紐解いて考えてみたいと思います。

「老後までに2,000万円」の根拠は総務省家計調査

「老後までに2,000万」の算定根拠は、市場ワーキンググループ第21回の厚労省提出資料に記載された、下記の表です。
この表によれば、退職後の高齢夫婦世帯の1ヶ月の収入(年金等)は支出を超えており、赤字額の月5万円ほどを資産の取り崩しで対応する必要があると述べています。

この表は総務省家計調査をもとに作成されています。

家計調査とは、総務省が毎月行っている世帯単位の統計調査であり、月々の収入や支出、その内訳を、世帯の属性(単身であるとか、就業者であるとか、世帯主の年齢とか)と関連付けて記録したものです。
上記表は2017年の調査報告の内容を踏まえたものであり、これによると高齢夫婦無職世帯は月々5.4万円の赤字となっています。
月5万円×12ヶ月×老後30年でざっくり2,000万円が必要、というのが「老後までに2,000万」の根拠です。

現役世代の月々の黒字額(貯蓄可能額)は?

老後までに2,000万円の根拠がわかったところで、この金額は果たして現役時代の貯蓄でまかなえるものなのでしょうか?

65歳時点で2,000万円を確保するには、現役時代(20歳から60歳)の40年間に、年50万円ずつ確保する必要がありますが、果たして可能な水準なのでしょうか。

これも家計調査から確認できます。
表番号4には世帯主の年齢別の収支が載っていますので、これを見てみましょう。

20代の家計

20代家計の実収入32万円、実支出22万円、差額の黒字額は月額10万円です。
実収入には月給31万円を含みます。
ちょっと高い印象を持ちますが、あくまで世帯単位なので、世帯主の給料プラス配偶者が働いていればその給与も含まれます。

30代の家計

30代家計の実収入48万円、実支出33万円、差額の黒字額は月額15万円です。
実収入には月給45万円を含みます。

40代の家計

40代家計の実収入56万円、実支出41万円、差額の黒字額は月額15万円です。
実収入には月給53万円を含みます。

50代の家計

50代家計の実収入57万円、実支出42万円、差額の黒字額は月額14万円です。
実収入には月給55万円を含みます。

現役世代の貯蓄可能額

以上の内容から、月々の黒字額をすべて貯蓄に回すとすると、その総額は6,600万円ほどになります。
したがって、「平均的な」生活を送ってさえいれば、金融庁の「老後までに2,000万円」という目標も余裕でクリアできることになります。

(出所:総務省家計調査2018)

所得区分が違うとどうなるか?

ただし、上記はあくまで各年齢区分の平均値であり、母集団には飛び抜けて稼ぐ人も含まれているため、我々の実感とはやや異なっているかもしれません。
家計調査には世帯主の年収別の統計もあります(表番号3)。
これによると、年収356万円以下の層では、月々の黒字が32,709円です。
仮に生涯この年収階級であったとすると、月々の黒字をすべて貯金しても1,728万円であり、2,000万円には届かないので、必然的に「投資しろ」ということになります。
何に・いくら・どのように投資するかについては踏み込んだ議論が必要になるためここでは述べませんが、投資信託の積み立て購入によって分散効果を享受するのが賢いやり方だと思います。
投資信託の積立投資に関する解説は、下記書籍が大変丁寧でわかりやすく、おすすめです。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”お金は寝かせて増やしなさい”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/51lH5js0euL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%81%8A%E9%87%91%E3%81%AF%E5%AF%9D%E3%81%8B%E3%81%9B%E3%81%A6%E5%A2%97%E3%82%84%E3%81%97%E3%81%AA%E3%81%95%E3%81%84-%E6%B0%B4%E7%80%AC%E3%82%B1%E3%83%B3%E3%82%A4%E3%83%81-ebook/dp/B0785HQ3WW”,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”vD3TZ”});

年収水準がもう少し高い層(356〜498万円)の人は、月々の黒字が8.2万円あります。

これをすべて貯蓄に回せられれば65歳時点で4,428万円になり、それなりに余裕が持てることになります。

仮にすべて日本株に投資すれば65歳時点の投資時価の中央値は1億を超え、2,000万を確保できない確率は5%以下と、かなり安心の将来設計です。

というわけで、結論としては、2,000万確保したければ年収上げろ、ということかと思います。

(出所:総務省家計調査2018)

まとめ

金融庁の報告書に込められた「老後までに2,000万円」というメッセージについて、現役世代の貯蓄でまかなえるのかを、総務省家計調査から考えてみました。
年齢別の平均黒字額をすべて貯蓄に回せば、「老後までに2,000万円」は余裕でクリアできる水準です。
所得別にみると、年収356万円以下の層は、平均どおりの収支では老後資金をまかなえませんので、投資によってリターンを稼ぐ必要が出てきます。
しかし年収が498万円まで増えれば、黒字額は大幅に増えますので、必ずしも投資リスクを取る必要はありません。
「老後までに2,000万円」を叶えるには、年収を上げるのが最も効果がありそうです。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”難しいことはわかりませんがお金の増やし方を教えてください”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/61OMJK9IiCL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E5%9B%B3%E8%A7%A3%E3%83%BB%E6%9C%80%E6%96%B0-%E9%9B%A3%E3%81%97%E3%81%84%E3%81%93%E3%81%A8%E3%81%AF%E3%82%8F%E3%81%8B%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%E3%81%8C%E3%80%81%E3%81%8A%E9%87%91%E3%81%AE%E5%A2%97%E3%82%84%E3%81%97%E6%96%B9%E3%82%92%E6%95%99%E3%81%88%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84-%E5%B1%B1%E5%B4%8E-%E5%85%83/dp/4866510420″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”nuz1Z”});

ドルコスト平均法と一括投資の比較シミュレーション|リスク、リターン、損失確率

こんにちは、毛糸です。

手軽な投資手法として有名なドルコスト平均法は、専門家でもその有効性に関して評価が分かれており、分析するのは簡単ではありません。

分析が難しい理由は、対象とするデータ期間によって結果が変わってしまったり、確率論の手法が単純には適用できないためです。
参考記事>>ドルコスト平均法の検証が難しい理由

本記事ではこのような困難さを伴うドルコスト平均法に関して、シミュレーションによってその有効性を検証してみたいと思います。

検証の結果、ドルコスト平均法は一括投資に比べてリスク・リターンともに低くなり、また将来時点の損失確率が一括投資よりも大きくなることがわかりました。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]テクニカル詳細高齢化時代の資産運用手法キャッシュフロー管理と機能的アプローチ”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/31nO8DAtMcL.jpg”,”/51Ih2ynlj4L.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%86%E3%82%AF%E3%83%8B%E3%82%AB%E3%83%AB%E8%A9%B3%E7%B4%B0-%E9%AB%98%E9%BD%A2%E5%8C%96%E6%99%82%E4%BB%A3%E3%81%AE%E8%B3%87%E7%94%A3%E9%81%8B%E7%94%A8%E6%89%8B%E6%B3%95%E2%80%95%E3%82%AD%E3%83%A3%E3%83%83%E3%82%B7%E3%83%A5%E3%83%95%E3%83%AD%E3%83%BC%E7%AE%A1%E7%90%86%E3%81%A8%E6%A9%9F%E8%83%BD%E7%9A%84%E3%82%A2%E3%83%97%E3%83%AD%E3%83%BC%E3%83%81-%E5%8A%A0%E8%97%A4-%E5%BA%B7%E4%B9%8B/dp/490760033X”,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”DvBi6″});

検証方法

検証には投資シミュレーションプログラムVer2を使用します。

参考記事>>積立投資をシミュレーションするプログラムを作った(投資シミュレーションプログラムVer2)

投資シミュレーションプログラムVer2は積立投資を行った場合に将来の資産額がどのような分布を描くかをシミュレーションするプログラムです。
シミュレーションはモンテカルロ法という手法を利用しており、確率論に立脚した統計的推論に基づいて将来を予測します。
本記事では、月額1万円のドルコスト平均法による積立投資をした場合の将来の資産分布と、それと同じ総投資額を一括で投資した場合の資産分布を比較し、将来時点のリスクとリターンを比較します。

ドルコスト平均法と一括投資の比較をしたいので、使用する期待リターンとリスクは条件を揃えればなんでもいいのですが、ここでは年金の基本ポートフォリオの期待リターン4.57%と、リスクを示す標準偏差12.8%を使うことにします。レバレッジはかけません。
参考記事>>年金のリスクとリターンを統計プログラミング言語Rで計算してみた

投資期間は、1年・10年・30年・50年とします。

ドルコスト平均法と一括投資の比較

投資シミュレーションプログラムVer2を用いたシミュレーション結果は、以下のとおりです。シミュレーション回数は1万回です。

投資期間1年

投資月数は1年*12ヶ月=12ヶ月、総投資額は12万円です。

ドルコスト平均法

当初投資額0円、月1万円の積立投資をします。

1年後の資産額の期待値12.26万円、中央値12.26万円です。

1年後の資産額を総投資額で割ったトータルリターンは2.21%です。

1年後の資産額の標準偏差を総投資額で割ったトータルリスクは7.09%です。


1年時点で損失を被る確率は39.64%です。

一括投資

当初投資額12万円の一括投資をします。

1年後の資産額の期待値12.57万円、中央値12.50万円です。

1年後の資産額を総投資額で割ったトータルリターンは4.80%です。

1年後の資産額の標準偏差を総投資額で割ったトータルリスクは13.36%です。


1年時点で損失を被る確率は38.11%です。

投資期間10年

投資月数は10年*12ヶ月=120ヶ月、総投資額は120万円です。

ドルコスト平均法

当初投資額0円、月1万円の積立投資をします。

10年後の資産額の期待値151.46万円、中央値146.30万円です。

10年後の資産額を総投資額で割ったトータルリターンは26.22%です。

10年後の資産額の標準偏差を総投資額で割ったトータルリスクは31.63%です。


10年時点で損失を被る確率は20.04%です。

一括投資

当初投資額120万円の一括投資をします。

10年後の資産額の期待値189.57万円、中央値173.92万円です。

10年後の資産額を総投資額で割ったトータルリターンは57.97%です。

10年後の資産額の標準偏差を総投資額で割ったトータルリスクは66.69%です。


10年時点で損失を被る確率は17.58%です。

投資期間30年

投資月数は30年*12ヶ月=360ヶ月、総投資額は360万円です。

ドルコスト平均法

当初投資額0円、月1万円の積立投資をします。

30年後の資産額の期待値765.48万円、中央値673.64万円です。

30年後の資産額を総投資額で割ったトータルリターンは112.63%です。

30年後の資産額の標準偏差を総投資額で割ったトータルリスクは108.04%です。


30年時点で損失を被る確率は7.39%です。

一括投資

当初投資額360万円の一括投資をします。

30年後の資産額の期待値1406.71万円、中央値1099.39万円です。

30年後の資産額を総投資額で割ったトータルリターンは290.75%です。

30年後の資産額の標準偏差を総投資額で割ったトータルリスクは310.57%です。


30年時点で損失を被る確率は5.53%です。

投資期間50年

投資月数は50年*12ヶ月=600ヶ月、総投資額は600万円です。

ドルコスト平均法

当初投資額0円、月1万円の積立投資をします。

50年後の資産額の期待値2286.82万円、中央値1820.05万円です。

50年後の資産額を総投資額で割ったトータルリターンは281.31%です。

50年後の資産額の標準偏差を総投資額で割ったトータルリスクは284.51%です。


50年時点で損失を被る確率は2.75%です。

一括投資

当初投資額600万円の一括投資をします。

50年後の資産額の期待値5794.77万円、中央値3921.94万円です。

50年後の資産額を総投資額で割ったトータルリターンは865.79%です。

50年後の資産額の標準偏差を総投資額で割ったトータルリスクは1072.02%です。


50年時点で損失を被る確率は1.93%です。

考察

ドルコスト平均法と一括投資のトータル・リターンとリスクは以下のようになりました。

この結果から、次のようなことがわかります。

長期になるほどリターン・リスクは上がる

ドルコスト平均法と一括投資のどちらの方法によっても、投資年数が長くなればなるほど、トータルのリターンとリスクは大きくなります。

ときおり「長期投資は安全」という主張を目にしますが、将来時点の資産の変動性をリスクと呼ぶ限りにおいて、長期の投資はリスクを増大させます(その裏でリターンという報酬も大きくなります)。
参考記事>>長期投資は【安全ではない】ことをシミュレーションで証明する

ドルコスト平均法より一括投資の方がハイリスク・ハイリターン

投資期間が同じならば、ドルコスト平均法よりも一括投資の方がリターン・リスクともに高いです。

これは、投資総額が同じであれば、ドルコスト平均法のほうが資金の待機時間が長く、リスクにさらされる期間と金額が小さくなるためです。

投資期間が短ければ、おおよそドルコスト平均法の2倍程度が一括投資のリターン・リスクになりますが、期間が長くなればなるほど複利の効果によって幅が大きくなってきます。

損失確率

損失確率についてまとめたのが以下の表です。

この表からわかることは、①投資が長期になるほど損失確率は小さくなる、②ドルコスト平均法よりも一括投資の方が損失確率が低い、ということです。

投資年数が同じであれば一括投資の方がハイリスク・ハイリターンですが、損失確率という別の「リスク(危険性)」の尺度で考えると、一括投資の方が安全である(損失が生じにくい)ということは驚きに値します。

まとめ

モンテカルロ法を用いた投資シミュレーションプログラムによって、ドルコスト平均法と一括投資の比較を行いました。

結論として

  1. いずれの方法でも長期投資はリスクとリターンを増大させる
  2. ドルコスト平均法より一括投資の方がハイリスク・ハイリターン
  3. ドルコスト平均法より一括投資の方が損失確率が小さい
ことがわかりました。
ドルコスト平均法の有効性に関する研究はあまり知られていないので、引き続き他の視点からも検証してみたいと思います。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]テクニカル詳細高齢化時代の資産運用手法キャッシュフロー管理と機能的アプローチ”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/31nO8DAtMcL.jpg”,”/51Ih2ynlj4L.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%86%E3%82%AF%E3%83%8B%E3%82%AB%E3%83%AB%E8%A9%B3%E7%B4%B0-%E9%AB%98%E9%BD%A2%E5%8C%96%E6%99%82%E4%BB%A3%E3%81%AE%E8%B3%87%E7%94%A3%E9%81%8B%E7%94%A8%E6%89%8B%E6%B3%95%E2%80%95%E3%82%AD%E3%83%A3%E3%83%83%E3%82%B7%E3%83%A5%E3%83%95%E3%83%AD%E3%83%BC%E7%AE%A1%E7%90%86%E3%81%A8%E6%A9%9F%E8%83%BD%E7%9A%84%E3%82%A2%E3%83%97%E3%83%AD%E3%83%BC%E3%83%81-%E5%8A%A0%E8%97%A4-%E5%BA%B7%E4%B9%8B/dp/490760033X”,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”yq6Gv”});