論文紹介:On Double-Entry Bookkeeping: The Mathematical Treatment (Ellerman 2014)

  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る

この記事では,複式簿記におけるT勘定の代数構造についての論文”On Double-Entry Bookkeeping: The Mathematical Treatment” Ellerman(2014)を紹介します。

何についての論文か

“On Double-Entry Bookkeeping: The Mathematical Treatment”(以下Ellerman (2014))は,複式簿記の代数構造に関するの論文です。

複式簿記における勘定科目のTフォーム(T勘定図)が”差の群”(group of difference)としての性質を持つことを明らかにし,複式簿記が持つ数学的な構造を明瞭に示しています。

Ellerman (2014)はこの群をパチョーリ群と名付けました。

【君の知らない複式簿記7】T勘定とパチョーリ群

どこが面白いのか

Ellerman (2014)が面白いのは,複式簿記の数学的な取り扱いを初めて明らかにしたからです。

複式簿記の数学的な性質に言及した研究者は古くから存在していましたが,それらはほとんど注目されませんでした。

ド・モルガンやケイリーといった高名な数学者も複式簿記の数学的構造とその美しさについて考えを述べています。

しかし数学の正しい言葉遣いで複式簿記の性質を明確に述べたものはほぼなく,19世紀に入ってから見いだされた数学によって,やっと複式簿記の正確な数学的表現が得られました。

Ellerman (2014)は複式簿記の性質を代数的に正確な形で表現し研究した点が,独創的です。

どんな示唆があるか

Ellerman (2014)は複式簿記という実務的色合いの濃い対象を,純粋な数学的対象と位置づけたところに重要な意義があります。

複式簿記の代数構造が明らかになれば,その構造に基づいて会計システムを構築したり,複式簿記の新しい活用方法を模索したりできます。

簿記代数は何の役に立つのか

特に,複式簿記の新しい活用方法については,Ellerman (2014)の中で,会計数値を多次元ベクトルで表すという方向性を提示しています。

複式簿記は単一の貨幣尺度に基づく測定が前提とされますが,ベクトル会計システムを用いれば,異なる性質の取引や異なる品目の財をひとつの価値尺度で測定することなしに,複式簿記の枠組みで考察することが可能になります。

関連する文献

Ellerman (2014)は現代的な抽象代数の言葉で表現されています。これを理解するには,大学の初年度レベルの代数の知識が必要です。以下の書籍は私がこの文献を理解する際に参考にしました。

以下の記事はEllerman (2014)が提示した複式簿記の代数構造「パチョーリ群」について解説しています。

【君の知らない複式簿記7】T勘定とパチョーリ群

 

Ellerman (2014)とは異なる複式簿記の代数研究もあります。試算表や仕訳をベクトルで表現しその代数構造を探った研究があり,以下の記事はその研究書のレビュー記事です。

書評『Algebraic Models for Accounting Systems』複式簿記と会計システムの代数構造を解明する

  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る

SNSでもご購読できます。

コメント

コメントを残す

*