金融

証券会社が潰れたら?分別管理のまとめと暗号資産取引業者との対比

こんにちは、毛糸です。

先日こんなツイートをしました。

本記事ではこのつぶやきを掘り下げて、証券会社においてある資産の保全に関する制度(分別管理)と、暗号資産取引業者における似たような規制についてまとめます。

証券会社が破綻・倒産した場合、預けている証券やお金はどうなるのか?

証券会社が破綻した場合に、預けている資産はどうなるのでしょうか?

破綻している会社に預けていた人が悪い、と自己責任で片付けられてしまうのでしょうか?

いいえ、そうではありません。

証券会社は顧客の資産を自社資産と分けて管理している(分別管理)ので、会社が倒産しても誰かに取られてしまうようなことはありません。

参考
今さら聞けない!投資Q&A-証券会社が倒産した場合、預けている証券やお金はどうなるの?

そもそも、証券会社に預けている資産は、証券会社のものになったわけではなく、あくまで顧客の資産を一時的に預かっているだけなので、証券会社が破綻しても差し押さえ等の対象にはなりません。

参考
株券の保管振替制度Q33.【参加者の破綻】証券会社を通じ株券を<ほふり>に預けた後、その証券会社が破綻した場合、自分の株券はどうなるのでしょうか?

上場株式の場合、第三者の機関(ほふり)で区分して管理したり、金銭は、信託銀行に信託財産として管理されています。
参考

分別管理の制度:金融商品取引法、金融庁・証券業協会・会計士の検査・監査

証券会社の分別管理は金融商品取引法に定められており、違反すれば罰則があるほか、金融庁の検査・日本証券業協会の監査・公認会計士によるチェックが行われます。
また、破産の懸念があるような場合には、日本証券業協会が特別監査に入り、厳しく監督されることになります。

セーフティーネットとしての投資者保護基金(いわゆるペイオフ)

分別管理を前提とすれば、仮に破綻した場合でも、顧客の財産は返還されます。
しかし、万が一破綻時に何らかの事故(事務ミスなど)が発生するなどにより、円滑に返還できなくなった場合に備えて、投資者保護基金から1,000万円まで補償が行われることになっています。
銀行が破綻したときに預金保険機構が保証を行うのと同様、証券にも類似の制度が定められているということです。

暗号資産(仮想通貨)の分別管理と、証券会社との比較

暗号資産(仮想通貨)に関しても、暗号資産取引業者は分別管理を行うことが定められています。
顧客の金銭に関する分別管理は、金銭信託として信託銀行を使うので証券会社と同様のルールです。
顧客の暗号資産については、「自己の暗号資産と分別して管理」し、「業務の円滑な遂行等のために必要なものを除き、顧客の暗号資産を信頼性の高い方法(コールドウォレット等)で管理すること」が求められるとされています。
証券会社が上場株式について行う分別管理とはやや内容が異なっていますね。
証券会社における有価証券の分別管理が「第三者機関における区分管理」であるのに対して、
暗号資産交換業者の暗号資産の分別管理「コールドウォレット等での管理」となっており、管理の仕方が異なっています。

分別管理と公認会計士制度:合意された手続から保証業務へ

証券会社の分別管理も、暗号資産取引業者の分別管理も、それが規則に則って適切に行われているかどうかを確かめるため、会計士による保証を受けなくてはいけません。
参考
分別管理は従来「合意された手続」でしたが、最近「保証業務」に変わったようです。
会計士による確認作業から、会計監査と同じようなレベルに高まった、というイメージでしょう。

会計情報で株価は予測できるのか

こんにちは、毛糸です。

会計は、企業がどのような経済活動を行っているのかを、企業外部の株主や債権者に報告するルールであり、言語でもあります。

会計が果たす役割にはいろいろあり、「自分が託したお金がどのように運用されているか」を知らせるためだったり、その企業の「価値」がどれくらいなのかを投資家が推測するためだったりします。

後者のような会計の役割を「意思決定有用性説」と呼びます。

投資の意思決定に有用であるために会計はあるのだ、ということですね。

この目的が果たされているなら、会計情報を使うことで、投資の成果の予測が出来るのではないかと考えられ、実際に多くの投資家は会計情報(利益やキャッシュフローや財務健全性など)から、投資の成果が得られそうな会社を選定しています。

一方で、ファイナンス(金融工学)の立場は、会計の果たす役割についてやや否定的です。

ファイナンスにおける「効率的市場仮説」によれば、投資家はすでに公開されている情報を用いるだけでは、超過収益は得ることが出来ないとされます。

市場に公開された情報は瞬く間に投資家の知るところとなり、その内容がポジティブならば、瞬時に株価に織り込まれ、蓋然性の高い収益機会はなくなってしまうと考えられているからです。

会計情報により株価リターンは予測できるのか、もしくは超過収益が得られるのか、という研究は、実務家・研究者を問わず多くの市場参加者が行っています。

個人的には効率的市場仮説とそこから演繹される理論体系が好きなので、これを信じていますが、実証研究では会計情報に関する多くの収益機会(会計アノマリー)の存在が指摘されています。

先入観を持たず、これらの研究を追っていきたいと思います。

種類株式の評価事例| 日本公認会計士協会(経営研究調査会)経営研究調査会研究報告第53号

こんにちは、毛糸です。

「種類株式」は、スタートアップや大企業の資金調達に用いられる、柔軟に設計された株式です。

種類株式は普通株式とは異なり、配当や残余財産請求権を制限したり強化したり、議決権や取得条項などを付けられるなど、各会社の都合に合わせてカスタマイズできます。

当然、種類株式に関する約束が普通株式と異なれば、価格も異なるものになります。

種類株式はその発行時に、その価値に見合う金銭を出資してもらう必要がありますので、当然種類株式の「評価」の問題が浮上します。

 日本公認会計士協会(経営研究調査会)は2013年、経営研究調査会研究報告第53号「種類株式の評価事例」を公表しました(リンク)。

「種類株式の評価事例」では日本の制度上許される種類株式の多くの条件について整理し、実際にそれらをどう評価に織り込めばよいのかを、例題を用いて説明しています。

種類株式の発行時には、どういう目的で、どういう設計にし、それをどう評価すべきかという問題を常にセットで考えねばなりません。

「種類株式の評価事例」には、その問題に対応するための指針が提供されています。

GPIFがアイスクリーム会社の株に集中投資しないわけ

こんにちは、毛糸です。

先日こんなつぶやきをしました。

これはネタツイートであり、本気で「儲かる会社の株を買え!」と言っているわけではありません(#ksprとはクソリプのことです)。

RT元のGPIFのツイートでは、変動パターンの異なる2つの会社(アイスクリーム会社とおでん会社)の株を組み合わせて保有すると、投資のブレ幅が小さくなることをイメージ図で表しています。

これは投資の「分散効果」として知られており、異なるランダムな動きをまとめることで、変動性が小さくなることは数学的に証明されています。
しかしGPIFのイメージ図(下図)を見ても分かる通り、分散投資を行うことで、好成績を上げたアイスクリーム会社にのみ投資をしていた場合よりも、低いリターンになってしまします。
したがって「最初からアイスクリーム会社を買っておけば高いリターンが得られただろう!」という考えを初心者は抱きがちです。
ですが、「アイスクリーム会社が好成績だった」というのはあとになって振り返ってみて初めてわかることであって、最初からアイスクリーム会社の株価リターンが好調であるとは限らないのです。
たまたまその年が冷夏であれば、予想よりもおでん会社の株価リターンが高まるでしょうし、猛暑が予想されていても台風の影響で涼しい日が続くようなことがあるかもしれません。
個別の会社の業績や株価リターンの良し悪しを見通すことは専門家にも難しく、学術研究においても「予測」の困難性が指摘されています。
こういった予測困難性(≒リターンのランダム性)を前提にすると、分散投資により多くの銘柄に投資するのが最善であるという結論が得られます(「最善」の意味については金融経済学(Wikipedia)を参考に)。
GPIFは運用する資金を多くの資産クラス・銘柄に振り分け、分散投資を実践しています。

【参考記事】
年金のリスクとリターンを統計プログラミング言語Rで計算してみた

もちろん「アイスクリーム会社を事前に発見することはできる!」と考える人も多くいて、銘柄選別により市場の「平均」よりも高いリターンを目指す「アクティブファンド」というのもあります。
いずれにせよ、事後的な情報をベースに「この株を買っておくべきだった!」などと指摘するのは完全なクソリプですので、注意しましょう。
分散投資の意義や個別株の選別の難しさについては、下記の書籍に説明があります。

分散投資の一つの実践手法であるインデックス投資については、下記の書籍がバイブル的な本であり、たいへん示唆に富む良書です。

「安全資産」という言葉の誤用について

こんにちは、毛糸です。

先日こんなツイートをしました。

本記事では「安全資産」という言葉の正しい意味を説明し、誤用例のどこが誤っているのかを解説します。

安全資産の定義

安全資産(risk free asset)は経済学やファイナンスの専門用語です。

安全資産とは、投資時点において収益(額・率)が確定している資産です。

株式などのリスクある資産は、投資時点において(資産の購入時点において)、将来いくら返ってくるかが明らかではありません。

100万円で買った株が120万円になることもあれば、80万円になってしまうこともあり、収益が確定していません。

収益が確定していない、つまり不確実であることを、「リスクがある」「リスキーだ」といいます。

安全資産とは、収益の不確実性がない資産のことであり、無リスク資産ともいいます。

金や円は安全資産?いいえ、誤用です

安全資産とはあらかじめリターンがわかっている資産ですから、以下のようなものは安全資産ではありません。

  1. 相場全体が下落しているときにこそ値上がりする資産
  2. 下落相場で買われやすい退避先資産
  3. 投資収益率のボラティリティが低い資産

相場全体が下落しているときにこそ値上がりする資産

株式相場全体がマイナスムードの時にも株価が下がりづらかったり、むしろ値上がりするような資産を、安全資産と称する場合がありますが、誤用です。

相場全体の動きと、個別の資産の動きの連動性は、ベータと呼ばれます。

相場全体が下がっても、価格が上がるような資産は、負のベータを持つ資産といえますが、この場合も投資時点でリターンが確定しているわけではないので、安全資産ではありません。

下落相場で買われやすい退避先資産

金(ゴールド)や円を安全資産と称する場合がありますが、誤用です。

一般用語としてなんとなく「安全」であるというニュアンスは伝わりますが、当然ながらこれらは投資時点でリターンが決まっていないので、安全資産ではありません。

投資収益率のボラティリティが低い資産

収益の変動性、つまり期待収益から上下にどれだけ変動しうるかの尺度を、ボラティリティといいます。

ボラティリティが高いということは、それだけ収益の振れ幅が大きい資産ということであり、ハイリスクです。

収益のボラティリティが小さい資産はローリスクであり、これを安全資産と称する場合がありますが、誤用です。

例えば、インフラ系企業(電気やガス)の株は従来、景気変動の影響を受けづらい銘柄をディフェンシブ銘柄として認知されていました。

しかし、某電力会社がああいうことになったこともわかるように、ボラティリティが低くとも、価格変動のリスクから完全に切り離されているわけではないので、安全資産ではありません。

安全資産は実際に存在するのか

デフォルト(貸倒れ)のない債券が唯一、安全資産です。

貸出時にリターンが決まっており、必ず返済されるので、これは定義通り、安全資産になります。

ただし、物価変動を考慮すると結論は変わります。

物価変動を考慮した場合の安全資産は、国家などのデフォルト懸念のない主体が発行する物価連動債です。

名目上の利回りが投資時点で既知の名目債は、物価変動により実質価値が上下するので、安全資産ではありません。

現在、一般市民が投資可能な物価連動国債は発行されていないですし、国家であってもデフォルト懸念がないとは言えないので、真の意味での安全資産はありません。

会計数値の時系列構造を決める関係式|クリーン・サープラス関係、金融資産関係、営業資産関係

こんにちは、毛糸です。

こんな本を読んでいます。

この本は、企業が発行する株式を評価する手法を、会計学と経済学の立場から論じる研究書です。

この中に、会計学における重要な方程式が取り上げられていたので、メモしておきます。

クリーン・サープラス関係(Clean Surplus Relation, CSR)

クリーン・サープラス関係(Clean Surplus Relation, CSR)とは、企業の純資産の変動を示す以下の関係式のことです。
\begin{equation} \begin{split}
bv_t=bv_{t-1}+ni_t-d_t
\end{split} \end{equation}
ここで\( bv_t\)は時点\( t\)における純資産の金額、\( ni_t\)は純利益、\( d_t\)は配当を示しています。

つまり、ある時点の純資産額は、一期前の純資産額に、その期の利益を加え、株主に支払った額を差し引いた金額として定まる、ということです。

純資産額\( bv_t\)は、金融(純)資産\( fa_t\)と営業(純)資産\( oa_t\)に分けられると仮定します。
\begin{equation} \begin{split}
bv_t=fa_t+oa_t
\end{split} \end{equation}

純利益\( ni_t\)は、金融(純)利益\( fi_t\)と営業(純)利益\( oi_t\)に分けられると仮定します。
\begin{equation} \begin{split}
ni_t=fi_t+oi_t
\end{split} \end{equation}

金融資産関係(Financial Asset Relation, FAR)

金融資産関係(Financial Asset Relation, FAR)とは、金融(純)資産の変動を示す以下の関係式のことです。
\begin{equation} \begin{split}
fa_t=fa_{t-1}+fi_t+fcf_t-d_t
\end{split} \end{equation}
ここで\( fcf_t\)は時点\( t\)におけるフリーキャッシュフローです。

金融資産関係が成り立つためには、株主への配当は金融(純)資産を通じて行われるという前提を置く必要があります。

この前提のもとで、ある時点の金融(純)資産額は、一期前の金融(純)資産額に、その期の金融(純)利益とフリーキャッシュフローを加え、株主に支払った額を差し引いた金額として定まります。

営業資産関係(Operating Asset Relation, OAR)

営業資産関係(Operating Asset Relation, OAR)とは、営業(純)資産の変動を示す以下の関係式のことです。
\begin{equation} \begin{split}
oa_t=oa_{t-1}+oi_t-fcf_t
\end{split} \end{equation}

営業資産関係(OAR)は、クリーン・サープラス関係(CSR)と金融資産関係(FAR)が成り立つときには当然成り立ちます。

ある時点の営業(純)資産額は、一期前の営業(純)資産額に、その期の営業(純)利益を加え、フリーキャッシュフローを差し引いた金額として定まります。

会計ベースの資産価格理論

CAR、FAR、OARは、ファイナンスの基本原則「無裁定の原則」と組み合わせると、会計数値をベースとした資産価格理論につながっていきます。
ファイナンスでは、ある資産が生み出す配当や利息の割引現在価値が、その資産の価格に等しいという関係式を考察しますが、これは基本的にはキャッシュフローの世界の考え方です。
しかし、上記のような会計関係(Accounting Relation(s))を組み合わせることで、キャッシュフローの世界から、会計数値の世界へと、資産価格の理論を発展させることができます。
もし興味があれば、財務諸表分析などを扱うテキストに説明があるので、読んでみると良いでしょう。

算術リターンと幾何リターンの違いについて

こんにちは、毛糸です。

本記事では、投資リターンの2つの概念、算術リターンと幾何リターンの違いについてまとめます。

記事中では、時点( t)における資産(株など)の価格を( S_t)と表し、算術リターンと幾何リターンの計算式の違いを説明します。

算術リターンとは

算術リターン(Arithmetric return)は、いわゆるリターン(収益率)として通常イメージするものです。

時点( t)で明らかになる算術リターン( r_t^A)は、次のように計算されます。
begin{equation} begin{split}
r_t^A=frac{ S_{t}-S_{t-1}}{S_{t-1} }=frac{ S_{t}}{S_{t-1} }-1
end{split} end{equation}

すなわり、算術リターンとは、投資額( S_{t-1} )に対する、投資額の増分( S_{t}-S_{t-1})の割合のことです。

この式を変形して得られる
begin{equation} begin{split}
R_tequiv 1+r_t^A=frac{ S_{t}}{S_{t-1} }
end{split} end{equation}は、投資が何倍になったかを示しており、( R_t)を粗収益率(グロスリターン)と呼びます。( r_t^A)は純収益率(ネットリターン)といいます。

幾何リターンとは

時点( t-1)の株価( S_{t-1})は、次の日には( S_t)に変化します。したがって、ある粗収益率( R)を用いて
begin{equation} begin{split}
S_t=S_{t-1}R_t
end{split} end{equation}と表わせます。

資産価格は負にはなりませんので、( R_t)は常に0以上の値を取ります。

ところで、自然対数の底(ネピア数)( e(=2.718cdots))は何乗しても0以上の値になることがわかっていますから、( R_t=e^x)と書いても間違いではありません。

つまり
begin{equation} begin{split}
S_t=S_{t-1}e^x
end{split} end{equation}が成り立ちます。

この( x)を決めてやれば、株価は( S_{t-1})から( S_t)に変化することがわかりますから、( x)はある意味で収益率を表しているといっても良いわけです。

この( x)をあらためて( r_t^G)と表して、
begin{equation} begin{split}
S_t=S_{t-1}e^{r_t^G}
end{split} end{equation}という関係式が成り立つとき、( r_t^G)を幾何リターン(Geometric return)といいます。

この式を変形すると
begin{equation} begin{split}
e^{r_t^G}&=frac{ S_t}{ S_{t-1}}\
Leftrightarrow r_t^G&=logleft( frac{ S_t}{ S_{t-1}}
right)end{split} end{equation}となり、対数が現れます。

幾何リターンは別名、対数リターンと呼ばれますが、それは幾何リターンが価格比( frac{ S_t}{ S_{t-1}})の対数として計算されることに由来しています。

算術リターンと幾何リターンの関係

算術リターンと幾何リターンは、いずれもリターン(収益率)を表す指標ですが、一見するとその計算方法はまるで異なっています。
しかし、実は両者には密接な関係があるのです。
数学的な話を後回しにして結論を述べると、リターンがあまり大きくないときには、
begin{equation} begin{split}
r_t^Afallingdotseq r_t^G
end{split} end{equation}つまり算術リターンと幾何リターンはほぼ同じ値になります。

証明

幾何リターンと算術リターンの定義から、
begin{equation} begin{split}
r_t^G&=logleft( frac{ S_t}{ S_{t-1}}right)\
&=logleft( 1+frac{ S_t-S_{t-1}}{ S_{t-1}}right)\
&=logleft( 1+r_t^Aright)\  end{split} end{equation}が成り立ちます。

対数関数( log(1+x))は( x)が小さいとき、( x)に近似することが知られているので、
begin{equation} begin{split}
logleft( 1+r_t^Aright)fallingdotseq r_t^A
end{split} end{equation}となり、( r_t^Afallingdotseq r_t^G )がわかります。

対数関数( log(1+x))が( x)に近似することは、対数関数をマクローリン展開することでわかります。

算術リターンと幾何リターンの性質の違い

算術リターンと幾何リターンは、リターンが小さければほぼ同じ値を取りますが、リターンが大きければその差は無視できないものになります。
たとえば暗号資産のリターンは、一日で倍増したり半減したりしますから、算術リターンと幾何リターンの違いは大きくなります。
また、投資額が0になるような最悪のケースでは、算術リターンは

begin{equation} begin{split}
r_t^A=frac{ 0-S_{t-1}}{S_{t-1} } =-100%
end{split} end{equation}と計算されるのに対して、幾何リターンは
begin{equation} begin{split}
r_t^G=logfrac{ 0}{ S_{t-1}}=-infty
end{split} end{equation}と計算され、かなり差が出ます。

以下の図は青線で算術リターンを、緑線で幾何リターンを、それぞれ表していますが、常に算術リターンのほうが大きな値を取ることがわかります。
投資成績がふるわないときは、算術リターンを使うことでマイナス幅を小さめに表現することができます。
公表されるリターンが算術リターンなのか幾何リターンなのかは、十分注意する必要があります。

クリーン・サープラス関係と最適配当戦略

こんにちは、毛糸です。

最近、企業の配当はどう決まるか?ということを考えています。

配当とは、企業が獲得した利益を株主に分配することであり、株主にとってみれば投資の回収を意味します。

配当は、会計的には純資産の一部を取り崩すと同時に現預金を社外に流出させるものです。

配当と純資産などの会計数値の関係は、以下の「クリーン・サープラス関係」と呼ばれる関係式で記述されます。

\begin{equation}\begin{split}
B_t=B_{t-1}+e_t-d_t
\end{split}\end{equation}

この式は、時点\(t\)における純資産の額\(B_t\)は、1期前の純資産額\(B_{t-1}\)に\(t\)期の利益\(e_t\)を加え、配当\(d_t\)を差し引いた額として決まる、という規則を示しています。

配当\(d_t\)はキャッシュフローであるのに対し、純資産額\(B_t\)や利益\(e_t\)は会計数値ですから、キャッシュフローを中心とした理論展開が行われるファイナンスと会計とは、このクリーン・サープラス関係を通じて関連付けられることになります。

ファイナンスでは配当の割引現在価値として株価が決まるという「配当割引モデル」がよく知られていますが、これをクリーン・サープラス関係と組み合わせることで、会計数値に立脚した「残余利益モデル」と呼ばれる会計数値ベースの株式評価モデルが構築できます。

配当割引にせよ残余利益モデルにせよ、配当はそれ自体が確率変数であると考えて理論展開されることが多いです。

しかしながら、配当は企業が株主との関係を伺いながら、ある意味で「適切な」水準で「決定」するものです。

したがって、その決定プロセスを考察することなしに、天下り的に確率変数(ランダムな変数)と考えてしまうのはよくないのではないかと考えています。

私はこの問題意識に基づき、企業はどんな意思決定に基づき「最適な配当戦略」を決めているのかを、経済学的観点から検証しています。

何か発見があったら、ブログでも取り上げたいと思います。

「高利回りのヘッジファンド」について金融庁に問い合わせてみた

こんにちは、毛糸です。

先日、金融庁から「老後までに2,000万必要」とも読める報告書が公開され、多くの国民が投資に意識を向けています。

【参考記事】
【年金は頼れない?】「老後までに2,000万」報告書を読んだあとに私たちが取るべき行動

老後に豊かな生活を送るには「リスクをとる」必要があるということを多くの人が認識し始めていますが、同時に金融詐欺の話もちらほら聞こえてきます。

先日私の友人から「平均利回り10%超のヘッジファンドがあるんだが、どうだろう?」という相談を受けました。

ヘッジファンドとは「金融派生商品など複数の金融商品に分散化させて、高い運用収益を得ようとする代替投資の一つ」(Wikipedia)であり、デリバティブなどの複雑な金融商品を利用して高いリターンの獲得を目的とする基金(ファンド)や運用主体のことを言います。

調べてみるとヘッジファンドに関する情報源はいくつかあり、ヘッジファンドを比較するサイトもいくつかあります(あえてリンクは載せません)。

友人から相談を受けた(ヘッジファンド)(本記事ではカッコを付けて呼称します)についても、比較サイトにはよく取り上げられているようなので、少し調べてみました。

しかし、どうも怪しいのです……

ヘッジファンド比較サイトのランキング上位に、いくつもの疑念

ぱっと気になった点だけでも

  • 金融商品取引業者の登録がない
  • ホームページに代表者名がない
  • 本店所在地が普通のマンション
  • 投資成績などの情報は個人情報を開示して問い合わせないと入手できない
  • 個人発信と思われる口コミがほぼない
  • ファンドを標榜する合同会社に直接出資する謎スキーム

などなど、引っかかる点がたくさんあります。

友人曰く「検索上位のサイトでおすすめされているから、たくさんの閲覧者がいる信頼できる情報だよ」とのことですが、検索上位であることは法的に信頼できる情報であることを意味しません。

直接話を聞きに行きたいという話も聞いていましたが、相手が「よからぬ輩」である可能性も否めません。

そこで、金融の専門相談窓口に電話してみることにしました。

投資詐欺かも?と思ったときの相談窓口

金融サービス利用者相談室は「あやしいな」「投資しても大丈夫なのかな」といった相談にも乗ってくれる金融庁の窓口です。

金融サービス利用者相談室より

こちらに電話をかけ、(ヘッジファンド)の名称や、その情報に行き着いた経緯をお話したところ、以下のような回答が得られました。

  • 金融商品取引業者や適格機関投資家等特例業者に登録・届け出はない
  • 無登録で業務を行っている、証券投資を業として行っていない詐欺的なもの、そのいずれか
  • 個人情報を渡すことになるので、連絡したり会ったりすべきではない

平たく言うと「付き合っちゃいけない人たちの可能性が高い」ということですね。

適格機関投資家等特例業者は登録が要らない?

ヘッジファンドについては、Wikipediaに「監督官庁に届け出る義務や規制がなく」と記載されていますがこれは誤りであり、日本においては金融商品取引法で明確に規制されています。

金融商品取引法においては、いわゆるファンド業務を行う者は、金融商品取引業者の登録を行うか、適格機関投資家等特例業務の届出を行わなければいけません。

【参考】
ファンド関連ビジネスを行う方へ(登録・届出業務について)-金融庁

あるまとめサイトにはこの(ヘッジファンド)について、適格機関投資家等特例業者等で少人数にしか勧誘を行わない私募であるから、規制は受けないのだ、と書いてありましたが、もし適格機関投資家等特例業者等であるとすると金融庁のこちらのページに公開されているはずです。

しかしこの(ヘッジファンド)の名前は見つかりませんでした……

この事実を知った私の知人も、さすがに実際に会いに行くのは諦めたようです。

自分のお金と命を守るリテラシーをもとう

金融に関する規制は、我々一般市民を不慮の損害から守るための大切なルールであり、一般的な金融機関であれば法令遵守の重要性を強く認識しています。

しかし一部の悪質な(詐欺的な)集団は、「高利回り」「損失なし」といった謳い文句で消費者を煽動し、実態のない、もしくは法令に違反した形で資金を得ようとしてきます。

そうした資金は不適切な立場の人間に渡ることもあれば、実際に面会する相手がそういう立場の人間かもしれません。

「おかしいのではないか」と疑う気持ちが少し欠けるだけで、お金を、そして命をも危険に晒す可能性があることを忘れてはなりません。

「うまい話はない」とよく言われますが、これは金融経済学における無裁定の原理として知られており、この世をよく表しています。

投資について勉強するべきと感じたのはとても素晴らしいことですが、是非焦らず、きちんと勉強をして、リテラシーを高めてください。

【参考記事】
「投資しなきゃ……」焦るなキケン!

超一般化中心極限定理と株式リターン

こんにちは、毛糸です。

先日こんなつぶやきをしました。

本記事では株価リターンを題材に、確率論における中心極限定理とその一般化についてまとめます。

中心極限定理とその一般化

「独立同分布の確率変数の和は正規分布に従う」というのが中心極限定理のざっくりとした内容です。

中心極限定理は確率論における重要な定理であり、それが成立するための前提条件がもちろんあります。

ある定理を、より広い範囲に適用できるようにしたり、前提条件を緩めたりした場合にも成り立つことを示す、というのは、数学においてはよく行われます。

こうした「一般化」は中心極限定理についても存在し、一般化中心極限定理という「拡張版の中心極限定理」では、確率変数の和は正規分布ではなく、べき乗則をもつ安定分布に従うことが示されます。

正規分布に従わない株価リターン

株式リターンの実際の分布は、正規分布よりも「レアな値が出やすい」ものであり、統計的には正規分布に従いません。

【参考記事】
日本株式、米国株式、欧州株式、全世界株式の日次リターンが正規分布ではなかった件

ファイナンスの多くの理論では、リターンの正規性を仮定して結論を導いていますから、実際のリターンが正規分布ではないことについて危機感を覚える人もいるでしょう。

しかし実は正規分布でないケースにも、多くの理論は成り立ちます。

【参考記事】
株価リターンが正規分布でなくてもファイナンス理論は成り立ちます!

べき乗則と一般化中心極限定理

正規分布でなければ何なのだ、ということで注目されているのが、「べき乗則」を持つ分布です。

リターンが正規分布に従うとき、「レアな」リターンが実現する確率は、期待リターンから遠くなればなるほど急激に減っていきます。

しかし実際には、「レアな」リターンはそれほど急激に減っていくものではなく、「べき乗則」というゆったりとした減り方をしているという研究があります。

一般化中心極限定理の帰結として得られる安定分布はこのべき乗則に則った確率分布であり、実際の金融データへの当てはまりの良さが期待されています。

冒頭で述べた超一般化中心極限定理は、これを更に広範囲に拡張した定理のようです。