金融

ビットコインの確率分布について|期待リターン、リスク、ヒストグラム【正規分布じゃない】

こんにちは、毛糸です。

前回、Rライブラリ「crypto」を用いて、仮想通貨の価格が簡単に取得できることを説明しました。
>>仮想通貨の価格ヒストリカルデータを取得する方法|Rライブラリcryptoの使い方

今回は「crypto」を使って取得したBitcoin(BTC)の価格情報を分析します。

BTC価格の時系列データを分析することで、BTCの期待リターン、リスクが極めて高いことがわかりました。

また、ヒストグラムと「正規性の検定」により、BTCのリターンは正規分布に従わないこともわかりました。

cryptoパッケージによるBTC価格の取得とリターンのデータ

cryptoパッケージのcrypto_history()関数を用いて、BTC価格のヒストリカルデータを取得します。
>>仮想通貨の価格ヒストリカルデータを取得する方法|Rライブラリcryptoの使い方

#crypto_history(coin = NULL, limit = NULL, start_date = NULL,
#end_date = NULL, coin_list = NULL, sleep = NULL)
#仮想通貨の価格等情報を取得
#dateはyyyymmdd形式で。NULLとすると最長期間
BTC<-crypto_history(coin = "BTC",
                    start_date = NULL,end_date = NULL)
BTC価格を時系列データとして読み込みます。
BTC_price<-ts(BTC$close,start=BTC$date[1])
plot(BTC_price,type="l")
日次収益率を計算し、プロットしてみましょう。
#日次収益率
BTC_return_daily<-diff(BTC_price,lag=1)/lag(BTC_price,k=-1)
plot(BTC_return_daily,type="l")
以下ではこの日次収益率データを使って、BTCの収益率の統計分析をしていきます。

基本統計量

期待リターン(平均)

日次収益率の平均をとることで、日次期待リターンを推定できます。結果は、日次リターンが0.28%、簡易的に年率換算すると102%となりました。株式のリターンが年率5%ほどと言われていますから、驚異的な水準です。
#日次収益率の平均(期待リターン)(%)
mean(BTC_return_daily)*100
#[1] 0.2808807
#年率換算(%)
mean(BTC_return_daily)*100*365
#[1] 102.5215

リスク(標準偏差)

日次収益率の標準偏差を計算することで、日次収益率のリスクを推定できます。結果は、日次ベースの標準偏差が4.3%、簡易的に年率換算すると82%となりました。株式のリスクが年率25%ほどと言われていますから、とてつもなくハイリスクであることがわかります。
#標準偏差(%)
sd(BTC_return_daily)*100
#[1] 4.333606

#年率換算(%)
sd(BTC_return_daily)*100*365^0.5
#[1] 82.79343

歪度

歪度と尖度の計算には、「moments」ライブラリのskewness()、kurtosis() 関数を用います。
install.packages("moments")
library(moments)

分布の歪み具合を示すのが歪度です。正規分布のように左右対称な分布では、歪度は0になります。

BTC日次収益率の歪度は0.5です。歪度が正であるということは、分布のピークが左側にあり、右側の裾が広い分布であることを意味します。つまり、極端に高いリターンが出やすいと言えます。

#歪度:正規分布は0、正なら右裾が広い
skewness(BTC_return_daily)
#[1] 0.5234792

尖度

尖度は分布の尖り具合を示します。正規分布は尖度3(0とする定義もあり)であり、これより大きければ、分布は平均の周りで尖った、左右に裾野が広い分布になります。

BTC日次収益率の尖度は12であり、正規分布より極端に「尖った」、そして「裾野の広い」分布になります。つまり、極端に高い・低いリターンが出現しやすいことを意味します。

#尖度:正規分布が3
kurtosis(BTC_return_daily)
#[1] 12.9556

BTC収益率(リターン)は正規分布にしたがうか?(正規性の検定)

ファイナンス(金融工学)では、資産のリターンは正規分布に従うと仮定されることが多いです(資産価格が対数正規分布、資産価格が幾何ブラウン運動、も同様の意味です)。
BTC収益率は正規分布に従うのか、確かめてみましょう。
すでに、BTC収益率の歪度が0.5(正規分布なら0)、尖度が12(正規分布なら3)であることは確認しましたので、正規分布ではないような気がしますが、別の視点からも確認します。
本性の内容は下記記事を参考にしています。

ヒストグラム

リターンの実現値が、どの範囲でどのくらいの頻度で出現したかを見るグラフが、ヒストグラムです。

BTC日次収益率のヒストグラムを描いてみます。

正規分布のヒストグラムは左右対称のベルのような形をしていますが、BTC収益率のヒストグラムはやや右に裾野が厚く、かつ裾野が広がっている印象を受けます。

hist(BTC_return_daily,main="BTC算術日次リターンのヒストグラム",xlab="日次リターン",ylab="度数")

Q-Qプロット

Q-Qプロットは、与えられたデータがある確率分布とどれくらい「ずれているか」を図示したものです。データをQ-Qプロットしたとき、データが45度線(y=xのグラフ)に沿って並んでいれば、理論上の分布と近いという根拠になります。Rではqqnorm()関数によって、正規分布を仮定した場合のQ-Qプロットを描画できます。

BTCの日次データをQ-Qプロットしてみると、以下のように曲線を描いており、正規分布に近いとは言えません。

qqnorm(BTC_return_daily,main="BTC算術日次リターンのQ-Qプロット")

シャピロ・ウィルク検定

シャピロ・ウィルク検定は、「データが正規分布に従う」という帰無仮説に関する検定です。したがって、シャピロ・ウィルク検定で計算されたp値が小さければ、帰無仮説を棄却、つまり「データは正規分布に従わない」ということが言えます。Rではshapiro.test()を使います。
検定の結果、p値はほぼ0であり、「BTC日次収益率は正規分布に従わない」と結論付けられます。
> shapiro.test(BTC_return_daily)


 Shapiro-Wilk normality test


data:  BTC_return_daily
W = 0.87881, p-value < 0.00000000000000022

コルモゴロフ・スミルノフ検定

コルモゴロフ・スミルノフ検定は、「データが指定した確率分布に従う」という帰無仮説に関する検定です。したがって、正規分布に関するコルモゴロフ・スミルノフ検定を行ったときにp値が小さければ、帰無仮説を棄却、つまり「データは正規分布に従わない」ということが言えます。Rではks.test()を使います。
検定の結果、p値はほぼ0であり、「BTC日次収益率は正規分布に従わない」と結論付けられます。
> ks.test(BTC_return_daily, "pnorm", mean=mean(BTC_return_daily), sd=sqrt(var(BTC_return_daily)))


 One-sample Kolmogorov-Smirnov test


data:  BTC_return_daily
D = 0.11752, p-value < 0.00000000000000022
alternative hypothesis: two-sided


 警告メッセージ: 
 ks.test(BTC_return_daily, "pnorm", mean = mean(BTC_return_daily),  で: 
   コルモゴロフ・スミノフ検定において、タイは現れるべきではありません
なお、警告メッセージは同一データが存在するときに発生します。連続確率分布では同一の値が実現する確率は0なので、本来生じるべきではないというアラートですが、今回は厳密な議論をしているわけではないので、スルーします。
以上のような検討の結果、いずれの方法でも、BTC日次収益率は正規分布に従わないという結論が得られました。

ビットコインの収益率が正規分布に従わないとなにが困るか

ビットコインの収益率が正規分布に従わないということは、収益率が正規分布に従うと仮定して展開される多くのファイナンス理論の道具が使えないことになります。
たとえば、オプションの価格公式であるブラック・ショールズ式は、資産価格が幾何ブラウン運動に従うこと(つまり収益率が正規分布に従うこと)を仮定しています。
したがって、ビットコインのオプションが組成されたときに、そのオプションの価格をブラック・ショールズ式で評価するのと、意思決定を誤ります。
また、将来の投資運用の成績をシミュレーションする「投資シミュレーションプログラム」も、資産の収益率に正規分布を仮定しているため、仮想通貨投資には利用できません。

このように、確率分布が標準的なファイナンスの仮定と異なることにより、やや慎重な議論が必要になってきます。

投資においては、為替や株式等よりも変動性が大きく、また極端に高いもしくは低いリターンが出やすいという点に気をつける必要があります。

まとめ

Rライブラリ「crypto」を用いて、ビットコインの価格情報を取得し、日次リターンの分析を行ってみました。
ビットコインの収益率は極めてハイリスク・ハイリターンであり、また、ファイナンスで通常仮定される正規分布とは大きく異なる性質を持っています。

ビットコインを始めとする仮想通貨のデータを扱う際には、この分布の特性をよく踏まえる必要があります。

関連記事>>ビットコインはバブルである

参考記事


データ解析その前に: 分布型の確認と正規性の検定 #rstatsj(リンク)
Leihcrev’s memo 入門本編 8章 確率分布(リンク
統計解析フリーソフト R の備忘録頁 ver.3.1 63. 正規性の検定(リンク)
Wikipedia 歪度(リンク
Wikipedia 尖度(リンク

将来の年金積立金の状況と損失確率をシミュレーションしてみた【モンテカルロ・シミュレーション】

こんにちは、毛糸です。

先日発表された金融審議会市場ワーキング・グループの報告書案「高齢社会における資産形成・管理」(以下「報告書案」、外部リンク)は、老後に年金を頼り生活するという前提を否定するかのような内容と受け取られ、話題になっています。

この報告書案を読まれた方の中には「年金なんてこれからどんどん給付額が減っていくから当てにならない!」と考えている方もいらっしゃるでしょう。

実際に将来の給付額がどうなるかというのは、人口動態や賃金・物価上昇率など、多くの要因に左右されるため、現時点で確定的なことを述べることは出来ません。

しかし、年金積立金の運用という観点から、金融データと確率論に基づき年金ポートフォリオの将来をシミュレーションすることは可能です。

本記事では年金積立金の基本ポートフォリオに関する将来予測を、モンテカルロ・シミュレーションに基づいて行ってみたいと思います。
参考記事:投資シミュレーションプログラムを作ってみた【Rでプログラミング】

本記事をお読みいただくことで、将来の年金積立金がいくらになるのか、そのリスクはどのくらいか、年金運用が損失を出す確率はどのくらいかといった情報を知ることが出来ます。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”YwNTV”});

年金積立金の基本ポートフォリオ

私たちが毎月支払っている年金保険料は、年金積立金管理運用独立行政法人(GPIF)という機関によって運用が行われています。

GPIFは年金支払のための原資を効率的に運用するため、株式や債券などのリスク資産に投資を行っています。

GPIFは年金ポートフォリオとして

  • 国内債券
  • 国内株式
  • 外国債券
  • 外国株式
の4つの資産クラスに投資を行うことを取り決めており、その割合も決まっています。以下はGPIFのサイト「基本ポートフォリオの考え方」(サイト)からの引用です。

この「基本ポートフォリオ」は、賃金上昇率+アルファを確保しつつ、リスクを最小限にして運用されることを目的としており、期待リターンは年4.75%、標準偏差で測ったリスクは年12.8%となっています。
参考記事:年金のリスクとリターンを統計プログラミング言語Rで計算してみた

今回はこのデータをもとに、将来の年金がどのくらいの規模になるのか、損失が出る確率はどのくらいなのかを計算してみたいと思います。

年金ポートフォリオのモンテカルロ・シミュレーション

年金積立金ポートフォリオが将来いくらくらいになるのか予測してみましょう。

年金運用の期待リターンは年4.57%、標準偏差で測ったリスクは年12.8%として、毎年の投資収益率が正規分布に従うと仮定した場合に、将来の年金ポートフォリオの金額を乱数を用いて予測します。

シミュレーションには「投資シミュレーションプログラム」を使います。
参考記事:投資シミュレーションプログラムを作ってみた【Rでプログラミング】

投資年数Yearは、1年、25年、50年、100年を入力し、それぞれの年数経過後の資産額をシミュレーションします。

投資の期待リターンはGPIFの基本ポートフォリオの期待リターン4.57%(4.57/100)を、投資のリスクは基本ポートフォリオのリスク(標準偏差)12.8%(12.8/100)を入力します。

#期待リターン(期待収益率μ、自由入力)
mu<-4.57/100
#リスク(標準偏差σ、自由入力)
sigma<-12.8/100

以下では1年後、25年後、50年後、100年後の将来における年金積立金の期待値と、標準偏差で測ったリスク、当初資金を下回る確率(損失確率)、損失が発生した場合の平均損失額(これを期待ショートフォールとよびます)を計算します。

なお、シミュレーションにあたって分析を単純化するために、運用以外の資金の出入りはないものとし、リバランスは考慮しないものとします。また、当初資金は記事執筆時点直近で報告された運用額である150兆6,630億円(150.6630兆円)とします。

1年後の年金のシミュレーション結果

  • 1年後の年金積立金の期待値は157兆円
  • 標準偏差で測ったリスクは19兆円
  • 損失確率は35%
  • 損失発生時の平均損失額(期待ショートフォール)は13兆円
1年後に損失が発生する確率が35%もあるのは驚きですが、損失が発生してもその期待値は13兆円なので、あまり大きな額ではありません。

25年後の年金のシミュレーション結果

  • 25年後の年金積立金の期待値は467兆円
  • 標準偏差で測ったリスクは313兆円
  • 損失確率は6%
  • 損失発生時の平均損失額(期待ショートフォール)は32兆円

25年後には年金積立金の期待値は現在の倍以上になります。

50年後の年金のシミュレーション結果

  • 50年後の年金積立金の期待値は1,422兆円
  • 標準偏差で測ったリスクは1,476兆円
  • 損失確率は2%
  • 損失発生時の平均損失額(期待ショートフォール)は39兆円
50年後に損失が発生する確率は2%であり、50年に一度と言われるような金融危機が起こらない限りは発生し得ないレベルです。

100年後の年金のシミュレーション結果

  • 100年後の年金積立金の期待値は13,389兆円
  • 標準偏差で測ったリスクは25,865兆円
  • 損失確率は0.2%
  • 損失発生時の平均損失額(期待ショートフォール)は52兆円
100年後に損失を抱える確率はほぼゼロです。

まとめと考察

投資シミュレーションプログラムを用いて、長期の年金運用の成績を予測してみました。
投資年数が長くなるほど将来の資産額の期待値は大きくなることがわかりましたが、一方でリスクも大きくなるようです。
年金運用で損失が出る確率は運用が長期になるほど低くなりますが、来年損失が出る確率は35%もあり、25年程度の運用でも6%の確率の確率で運用損が生じることもわかりました。
年金制度の将来を占うにあたり、今回の分析はやや設定を単純化しすぎていますが、たとえば今後年金運用が損失を出すようなことがあっても「統計的にはまぁ損失もありうるよね」と納得する材料にはなるのではないでしょうか。
年金制度はその存続も含め、今後も議論になるものと思われますが、多角的な視点から考えてみたいと思います。
なお、本記事の分析を行うに際して、下記の書籍を参考にしました。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”S6AUW”});

FXの期待リターン、億り人になれる確率、破産する確率【モンテカルロ・シミュレーション】

こんにちは、毛糸です。

資産運用にはいろいろな手段があり、なかでも外貨預金やFX(外国為替証拠金取引)は有名どころです。

しかし、外貨預金やFX(以下FX等といいます)は、文献によっては「手を出すべきでない」投資商品として紹介されていたりもします。

たとえば『図解・最新 難しいことはわかりませんが、お金の増やし方を教えてください!』には、以下のように説明されています。

『為替が上がるか、下がるか』と、『金利が高いか、安いか』をセットで考えて、取引価格が決まっているから、買う前にどっちの通貨がお得かは言えない

外貨預金をやるのはコイントスで『表』か『裏』にお金をかけるのとほぼ一緒

 

本記事ではこの主張について詳しく掘り下げ、FX等の期待リターンについて考察したあと、それに基づく「億り人になれる確率」と「破産する確率」を投資シミュレーションプログラムを用いて計算してみます。

外貨預金・FXはなぜ魅力的なのか

FX等は、2つの収益機会にあずかれます。

ひとつは海外通貨に対して適用される高い金利収入(インカムゲイン)、もうひとつは通貨高による価値の増加(キャピタルゲイン)です。

外貨預金は通常、高金利通貨建てで設定され、高い金利収入(インカムゲイン)が得られるとされています。

またキャピタルゲインに関しても、例えば米ドル建て外貨預金をするとして、1ドル100円のときに1万ドルを預金し、引き出し時に1ドル110円になっていれば、円建てでは100万円から110万円に増えることになります。

FXも同様に、為替の変動による利益を得つつ、スワップポイントと呼ばれる金利収入が得られます。

このように、インカムゲインとキャピタルゲインが同時に得られるという魅力があるため、FX等は人気の投資となっています。

FXリターン分析の前提①:裁定取引とフォワード・パリティ

FX等の期待リターンについて考察する前に、いくつかテクニカルな前提をおきます。

今後、通貨高が見込めるような通貨があったとしましょう。つまり、キャピタルゲインが見込めそうな通貨です。

為替の世界には、将来の為替レートを現時点で「約束」する契約が存在します(通貨先物や為替予約といいます)。

もし将来、通貨高になりそうな通貨に対して、将来低いレートで買う「約束」をすることができれば、その取引を行う投資家は、将来安いレートで通貨を買い、高い市場レートで売却することで利益が得られそうです。

このような投資家の行動を「裁定」とよび、通貨は投資家の裁定によって「適正水準」に収斂します。

やや数学的な表現をすると、将来の( T)年後のスポット為替レートの期待値\(E[S_T] \)が「約束」されたフォワード為替レート\( F_T\)と異なっていれば、市場の効率性を前提として裁定が行われ、両者は一致するようにレートが変化します。つまり

\[ \begin{split} F_T=E[S_T]\end{split} \]
という等式が成り立つようにフォワード為替レート\( F_T\)が調整されます。

両辺を現在のスポット為替レート\( S_0\)で割ると

\[ \begin{split} \frac{ F_T}{S_0 }=E[\frac{ S_T}{ S_0}]=E[1+s_{0,T}]\Leftrightarrow E[s_{0,T}]=\frac{ F_T}{S_0 }-1\end{split} \]
となります。\(E[s_{0,T}] \)は為替の変化率(純額表示のキャピタルゲイン)です。

この等式をフォワード・パリティとか、為替レートの期待形成条件といいます。

 

FXリターン分析の前提②:カバー付き金利パリティ

さて、FX等で高金利通貨を買うことで、高いインカムゲインが得られ、運が良ければキャピタルゲインにもあずかれます。

しかし、このような目論見はあらゆる市場参加者(個人投資家や、証券会社などの機関投資家)が狙っているものです。

もし高い金利水準にありながら割安な通貨があれば、その通貨にはまたたく間に買いが入り、一瞬で「適正水準」にまで通貨高になります。

そうなれば、将来のキャピタルゲインの幅が縮まって、投資の旨味が小さくなりますので、投資家は早くに将来の為替レートを「約束」しようとします。

こうした取引によって、フォワード為替レートで「約束」した通貨の値上がり益は、最終的には金利差と同じ水準になるよう調整されます。

数式で表すと、スポット為替レートを\( S_0\)、フォワード為替レートを\( F_T\)、売り通貨の金利(国内金利)を\( i_D\)、買い通貨の金利(海外金利)を\( i_F\)としたとき

\[ \begin{split} \frac{ F_T}{S_0 }=\frac{1+i_D}{ 1+i_F}\simeq 1+i_D-i_F \end{split}\]
という関係が成り立ちます(右辺は近似式)。

つまり、フォワード為替レートという「約束」された為替レート(カバーされたレート)で測る通貨のリターンは、内外金利差と一致するということです。

FX等の期待リターンはゼロ

フォワード・パリティとカバー付き金利パリティを組み合わせると、FX等の期待リターンが計算できます。

FX等の期待リターンは、金利差(インカムゲイン\( i_F-i_D\))と通貨高による増分(キャピタルゲイン\( E[s_{0,t}]\))の和を意味します。

フォワード・パリティより

\[ \begin{split}E[s_{0,T}]=\frac{ F_T}{S_0 }-1 \end{split} \]
であり、

カバー付き金利パリティより

\[ \begin{split}\frac{ F_T}{S_0 }-1\simeq i_D-i_F  \end{split} \]
ですから、これらを合わせると
\[ \begin{split}E[s_{0,T}]= i_D-i_F \Leftrightarrow (i_F-i_D)+E[s_{0,T}]=0\end{split} \]
となります。第一項はインカムゲイン、第二項はキャピタルゲインを表しており、これらの和、つまりFX等の期待リターンは0であることが示されました。

以上のことをまとめると、フォワード・パリティとカバー付き金利パリティによって、FX等の期待リターンは、インカムゲインとキャピタルゲインが相殺され0になる、ということです。

以上の内容は、下記書籍により詳しい説明と数式での証明が載っていますので、合わせてご参照ください。

FXで億り人になれる確率、破産する確率

期待リターンが0のFXで十分な資産を築ける確率はどれくらいなのでしょうか。

以下では当初資金1,000万円をドル円(年あたりリスク10%と想定)で運用するとして、10年後に億り人になれる確率と破産する確率を計算します。

FXはレバレッジ取引が可能ですから、レバ1倍、5倍、10倍のそれぞれのケースを考えてみます。

本性の計算は「投資シミュレーションプログラム」を用いています。シミュレーション回数は10000回です。

  1. レバ1倍の場合、10年後の資産の期待値は1,002万円、億り人になれる確率は0%破産する確率は0%
  2. レバ5倍の場合、10年後の資産の期待値は1,018万円、億り人になれる確率は1.5%破産する確率は20%
  3. レバ10倍の場合、10年後の資産の期待値は1,866万円、億り人になれる確率は3.12%破産する確率は83%

考察

期待リターン0のFXでは、レバをかけないと億り人にはなれないことがシミュレーションで明らかになりました。
また、レバを高めることで億り人になれる確率は高まりますが、同時に破産する確率も高くなることがわかりました。

まとめ

フォワード・パリティとカバー付き金利パリティという関係式から、FX・外貨預金は理論上、期待リターンが0であることがわかりました。この前提のもとで投資を行うと、レバレッジをかけないと多大な富を築くことは出来ないことが明らかになりましたが、一方で破産の確率も高まることがわかりました。

本記事の内容は複数の仮定に基づくものであり、実際の投資収益の成否を保証するものではなく、また実際にFX等で成功していらっしゃる方々の成果を否定する意図は全くありません。また、シミュレーションはあくまで確率論に基づいた予測であることをお断りしておきます。

 

投資シミュレーションプログラムを作ってみた【Rでプログラミング】

こんにちは、毛糸です。

投資にはリスクがあります。

自分の資産が将来どれくらいの金額になるのか、リタイアまでにどれくらいの資産を築けるのか、といった疑問に、現時点で確定した答えを出すのは不可能です。

しかし、投資データと統計学を用いて、将来をシミュレーションすることは可能です。

私は大学院で金融工学を専攻し、公認会計士として日々数字と向き合う仕事をしながら、プログラミングを勉強して投資意思決定に使えるツールを開発して遊んでいます。

今回はそんな日々の勉強の成果として「投資シミュレーションプログラム」を作ってみました。

将来に渡って投資を行っていった場合に、数年・数十年後にいくらの資産が築けるかをシミュレーションするプログラムです。

この記事では「投資シミュレーションプログラム」のコードをすべて公開し、その使いかたを解説します。

統計プログラミング言語Rと、オンラインでの利用

統計プログラミング言語Rは、データサイエンスで用いられるプログラミング言語です。

統計解析や計算を簡単に行うことができ、計算機としても使えます。

本記事ではプログラミング言語Rを用いて、投資シミュレーションプレミアムを作成します。

Rを使うには、本来RのソフトウェアをPCにインストールする必要がありますが、今回はちょっとした計算に使うのみなので、ブラウザ上で完結するR onlineを利用します。
参考記事:ブラウザ上でRプログラミング(R online、Rオンラインを使う方法)

R onlineのサイト(リンク)でコードを打ち込めば、すぐにRによる計算が実行できます。

試しにサイト上で
1+1
と入力し、[Run it]してみると、すぐに下の方に計算結果が表示されます。

以下、このR onlineを使って、「投資シミュレーションプログラム」作成します。

すでに打ち込んである内容は、すべて削除して構いません。

投資シミュレーションプログラムの流れとモンテカルロ・シミュレーション

「投資シミュレーションプログラム」は、以下のような流れでシミュレーションを行い、将来の投資額の予測値や確率分布を算出します。
  1. 投資のリターンやリスクなどの前提条件を入力する
  2. 時間ステップ(年単位、日単位など)ごとに「乱数」を発生させ、ランダムな収益率をシミュレーションする
  3. 複利計算により将来の資産額を算出する
  4. 以上を数千、数万回繰り返し、確率論的に将来資産額の推定値を算出し確率分布を予測する
このように、乱数を用いて将来を予測しシミュレーションする方法を「モンテカルロ・シミュレーション(モンテカルロ法)」といいます。

モンテカルロ・シミュレーションは金融実務において非常に重要な手法として認知されており、金融機関においてデリバティブの価格計算やリスク管理などに用いられています。

「投資シミュレーションプログラム」はモンテカルロ・シミュレーションを使って、将来の資産額がどれくらいになるかを予測するプログラムです。

「投資シミュレーションプログラム」のコードは以下にすべて記しており、コードをR onlineにコピー&ペーストするだけでシミュレーションを行うことが出来ます。

モンテカルロ法は統計学・確率論を基礎として、プログラミング言語を用いながら、ファイナンスの知識をフル活用する高度な手法です。下記書籍はそんなモンテカルロ法を基礎から学べる良書ですので、気になる方は是非手にとってみてください(本書が理解できれば投資シミュレーションプログラムはゼロから自作できます)。


インプット情報の入力

まず、シミュレーションに必要な情報を入力します。

投資年数を入力します。以下では年単位で入力することとし、40年間の投資をシミュレーションしてみますが、自由に変更して構いません。

#投資年数(自由入力)
Year<-40

シミュレーション回数を入力します。今回シミュレーションに使用するのは金融工学で用いられる「モンテカルロ法」という手法で、統計学の「大数の法則」に従っています。シミュレーション回数が多いほど「正確な」計算ができますが、計算に時間がかかるようになります。100回や1000回程度だと、シミュレーションの都度、結果がばらつきます。

#シミュレーション回数(自由入力、多いほど正確だが時間がかかる)
sample<-10000

「投資シミュレーションプログラム」では毎年のリターンが確率的に決まるような状況で、資産額がどのように変化するかをシミュレーションするものです。そのために、シミュレーションの数値を格納する「箱」を用意し、ここに数値を格納します。「箱」は数学用語でいうところの行列にあたります。

#シミュレーション数値を格納する行列
A<-matrix(0,sample,Year+1)

初期投資額を入力します。投資元本(元手)は自由に決めて構いません。単位も問いません(今回は2000万円のつもりで2000を入力します)。

#初期投資額を入力(自由入力)
initial<-2000

先ほど作成したシミュレーション数値格納用の「箱」に初期投資額を代入します。

#シミュレーション数値に初期投資額を入力
A[,1]<-initial

投資の期待リターンを入力します。ここでは一年あたりの期待収益率を入力します。今回は投資の年あたり期待リターンを7%として計算します。

#期待リターン(期待収益率μ、自由入力)
mu<-7/100

投資のリスクを入力します。今回は米国株式に連動して値動きする投資信託VTIのリスク(標準偏差)としての概算値12.88%(12.88/100)を入力します(参考ページリンク)。

#リスク(標準偏差σ、自由入力)
sigma<-12.88/100

「投資シミュレーションプログラム」では、各年の投資収益率が既に入力したリターンとリスクに基づいた正規分布に従うと仮定し、正規分布に従う確率変数(乱数)を多数発生させて将来を予測します。Rではrnorm()で正規分布に従う乱数を生成することが出来ます。この正規乱数を、投資年数×シミュレーション回数の分だけ作ります。

#乱数を生成(ランダムな投資収益率)
x<-rnorm(sample*Year,mu,sigma)

次に、生成した乱数を計算に適した行列形式に整えます。

#乱数(ランダムな収益率)を行列形式に変換
z<-matrix(x,sample,Year)

ではシミュレーションを初めましょう。シミュレーションはsample回行います。各シミュレーションにおいて、1年ごとに資産額を算出します。今年の資産額=前年の資産額×(1+収益率)で計算できます。この計算をRのfor文(繰り返し文)を用いて行います。

#シミュレーション開始
for (s in 1:sample){
        for ( t in 1:Year){
            #今年の資産額=前年の資産額*(1+収益率)
            A[s,t+1]<-A[s,t]*(1+z[s,t])
        }
}

シミュレーションの結果、つまり投資期間経過後の資産額はA[,Year+1]という「箱」に収められています。

シミュレーションでは、良い投資結果を収めたシナリオもあれば、ほとんど儲からなかったケースもあります。全体的な「傾向」を知るためには、シミュレーション結果の平均や中央値を計算します。

#シミュレーション結果の期待値を表示
paste(Year,"年後の資産額の期待値は",mean(A[,Year+1]))
#シミュレーション結果の中央値を表示
paste(Year,"年後の資産額の中央値は",median(A[,Year+1]))

投資期間経過後の資産額はA[,Year+1]に格納されていますので、ここから将来の資産額の分布を用いた様々な確率の計算が可能です。

たとえば将来の資産額が初期投資額を下回るような確率(つまり投資で損失が発生する確率)も計算できます。

#損する確率を表示
paste("損失を被る確率は",length(A[,Year+1][A[,Year+1]<initial])/sample)
ヒストグラムを描くことで、将来の資産額の確率分布をビジュアル的に知ることも出来ます。
#将来の資産額の確率分布(ヒストグラム)を表示
hist(A[,Year+1])

この結果は乱数を用いたものなので、このプログラムを走らせるたびに結果が変わります。乱数の変動性を取り除きたい(つまりより高い精度で計算したい)場合は、sampleの数を増やしてください。

今回の例では、年あたりの収益率が期待リターン7%、リスク(標準偏差)12.88%の正規分布に従うような投資機会に、当初一括で2,000万円を投資した場合に、40年後の資産額の期待値が約3億円となることがわかりました。

まとめ

モンテカルロ・シミュレーションで将来の資産額を推計する「投資シミュレーションプログラム」を作成しました。
以下がそのコードの全体像です。
#投資年数(自由入力)
Year<-40
#シミュレーション回数(自由入力、多いほど正確だが時間がかかる)
sample<-10000
#シミュレーション数値を格納する行列
A<-matrix(0,sample,Year+1)
#初期投資額を入力(自由入力)
initial<-2000
#シミュレーション数値に初期投資額を入力
A[,1]<-initial
#期待リターン(期待収益率μ、自由入力)
mu<-7/100
#リスク(標準偏差σ、自由入力)
sigma<-12.88/100
#乱数を生成(ランダムな投資収益率)
x<-rnorm(sample*Year,mu,sigma)
#乱数(ランダムな収益率)を行列形式に変換
z<-matrix(x,sample,Year)
#シミュレーション開始
for (s in 1:sample){
        for ( t in 1:Year){
            #今年の資産額=前年の資産額*(1+収益率)
            A[s,t+1]<-A[s,t]*(1+z[s,t])
        }
}
#シミュレーション結果の期待値を表示
paste(Year,"年後の資産額の期待値は",mean(A[,Year+1]))
#シミュレーション結果の中央値を表示
paste(Year,"年後の資産額の中央値は",median(A[,Year+1]))
#損する確率を表示
paste("損失を被る確率は",length(A[,Year+1][A[,Year+1]<initial])/sample)
#将来の資産額の確率分布(ヒストグラム)を表示
hist(A[,Year+1])
このプログラムを使うことで、将来の資産額の推計につかったり、将来資産を10倍にするために必要なリターンを探したり、投資で損失が出る確率を知ってリスク管理に活かすことも出来ます。
今後このプログラムを更に発展させていきたいと思います。

もし「こんな使い方もできる!」「こんな内容も知れたらいいな」といったアイデアがあれば、是非教えてください

参考文献

「投資シミュレーションプログラム」はモンテカルロ・シミュレーションという手法に基づく予測を行っております。モンテカルロ・シミュレーションを投資に活用するためには、統計学・プログラム・ファイナンスの知識が必要になりますが、下記書籍はそれらを必要な範囲で解説しており、優れた良書です。

プログラミング言語Rを使ってファイナンスや投資の問題を分析するテキストとして、下記が参考になります。

年金が「目標を達成できない確率」を統計プログラミング言語Rで計算してみた

こんにちは、毛糸です。

前回、年金ポートフォリオのリスクとリターンを、統計プログラミング言語Rを使って計算してみました。
参考記事:年金のリスクとリターンを統計プログラミング言語Rで計算してみた

今回は前回のコードを少し応用して、私たちの年金ポートフォリオが「目標を達成できない確率」を計算してみたいと思います。

年金運用の目標

私たちの年金資産の運用を所管する年金積立金管理運用独立行政法人(GPIF)は、私たちの年金が安定的かつ効率的に運用されるようなポートフォリオを組み、年金資産を運用しています。

「基本ポートフォリオの考え方」(外部リンク)に記載されている通り、2014年には年金運用の中期目標が見直され、以下のような考え方のもと運用が行われることとなりました。

年金積立金の運用は(中略)財政の現況及び見通しを踏まえ、保険給付に必要な流動性を確保しつつ、長期的に積立金の実質的な運用利回り(積立金の運用利回りから名目賃金上昇率を差し引いたものをいう。)1.7%を最低限のリスクで確保することを目標とし、この運用利回りを確保するよう、積立金の管理及び運用における長期的な観点からの資産構成割合(基本ポートフォリオ)を定め、これに基づき管理を行うこと。

ここに書いてあるとおり、年金運用は資産の運用利回り(リターン)から名目賃金上昇率を控除した実質的な運用利回りを1.7%確保することを目標としています。

本記事では統計プログラミング言語Rを用いて、年金運用がこの目標を達成できない確率を計算してみようと思います。

Rの使いかたに関しては前回の記事「年金のリスクとリターンを統計プログラミング言語Rで計算してみた」を参照するか、もしくはより深い理解をしたい方には、下記書籍をおすすめします。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”金融データ解析の基礎 (シリーズ Useful R 8)”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41Nyynhmv5L.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E9%87%91%E8%9E%8D%E3%83%87%E3%83%BC%E3%82%BF%E8%A7%A3%E6%9E%90%E3%81%AE%E5%9F%BA%E7%A4%8E-%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-Useful-R-8/dp/4320123719″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”wjJhB”});

年金ポートフォリオと名目賃金上昇率

「基本ポートフォリオの考え方」(外部リンク)で提供されている「【参考資料】年金積立金管理運用独立行政法人の中期計画(基本ポートフォリオ)の変更(2014年10月31日)」[PDF:249KB](以下の画像は断りがなければこちらからの引用です)には、年金ポートフォリオが投資する各資産の期待リターンと名目賃金上昇率が載っています。

Rに以下のように入力し、リターンと賃金上昇率のベクトル(期待リターンベクトル)を作成します。

#各資産クラスの期待リターン(実質、経済中位) 

mu<-c(2.6/100, 6.0/100, 3.7/100, 6.4/100, 1.1/100,2.8/100)

同様に、各資産と賃金上昇率のリスク(標準偏差)と相関についても、以下のように入力します。

#各資産クラスの分散(標準偏差の2乗) 

sigma<-c(4.7/100, 25.1/100, 12.6/100, 27.3/100, 0.5/100,1.9/100) 

#相関行列

Rho<-rbind(

     c(1,-0.16,0.25,0.09,0.12,0.18),

     c(-0.16,1,0.04,0.64,-0.1,0.12),

     c(0.25,0.04,1,0.57,0.15,0.07),

     c(0.09,0.64,0.57,1,-0.14,0.10),

     c(0.12,-0.1,-0.15,-0.14,1,0.35),

     c(0.18,0.12,0.07,0.10,0.35,1))

年金ポートフォリオの実質リターン

年金ポートフォリオは、以下のような資産配分で投資が行われます。
  • 国内債券(期待リターン(r_1 =2.6%))に35%(これを( w_1)とおく)
  • 国内株式(期待リターン(r_2 =6.0%))に25%(これを( w_2)とおく)
  • 外国債券(期待リターン(r_3 =3.7%))に15%(これを( w_3)とおく)
  • 外国株式(期待リターン(r_4 =6.4%))に25%(これを( w_4)とおく)
  • 短期資産(期待リターン(r_5 =1.1%))に0%(これを( w_5)とおく)
このとき年金ポートフォリオの期待リターン(mu_{PF} )は

[ begin{split}
mu_{PF}=sum_{i=1}^5 w_i r_i
end{split} ]と書けます。

実質リターンはここから名目賃金上昇率(これを( r_w)とします)を差し引けばよいので、年金ポートフォリオの実質期待リターン( mu_{Real})は

[ begin{split}
mu_{Real}=mu_{PF}-r_w
end{split} ]となります。

Rではこれを以下のように記述します。

#ポートフォリオから名目賃金上昇率を控除する実質ポートフォリオのウエイト

weight_Real<-c(0.35,0.25,0.15,0.25,0,-1)

#ポートフォリオから名目賃金上昇率を控除した実質リターン

(mu_Real<-weight_Real%*%mu)

スポンサードリンク


(adsbygoogle = window.adsbygoogle || []).push({});

年金ポートフォリオの実質リスク(標準偏差)

同様に、リスク(標準偏差)についても計算します。

前回の記事「年金のリスクとリターンを統計プログラミング言語Rで計算してみた」と同じく、分散ベクトルと共分散行列から、分散共分散行列を作成します。

Rでは以下のように記述します。

#実質標準偏差
Var_Real<-weight_Real%*%Sigma%*%weight_Real
#ポートフォリオのリスク(標準偏差)
sigma_Real<-Var_Real^0.5
これでポートフォリオの実質リスク(標準偏差)が計算できました。

年金ポートフォリオの目標が達成できない確率と下方確率

各資産の収益率と賃金上昇率が、以上で述べたような期待リターンベクトルと分散共分散行列をもつ多次元正規分布に従うと仮定すると、年金ポートフォリオの実質収益率も正規分布に従うことがわかります。

正規分布の性質や計算方法について詳しく知りたい方は、下記参考文献を参照してください。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”統計学入門”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/512H1E9ARDL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E7%B5%B1%E8%A8%88%E5%AD%A6%E5%85%A5%E9%96%80-%E5%9F%BA%E7%A4%8E%E7%B5%B1%E8%A8%88%E5%AD%A6%E2%85%A0-%E6%9D%B1%E4%BA%AC%E5%A4%A7%E5%AD%A6%E6%95%99%E9%A4%8A%E5%AD%A6%E9%83%A8%E7%B5%B1%E8%A8%88%E5%AD%A6%E6%95%99%E5%AE%A4/dp/4130420658″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”A0r5B”});

年金ポートフォリオの実質リターン(名目リターンから賃金上昇率を控除したもの)を( r_{Real})とすると、( r_{Real})は平均( mu_{Real})、分散(sigma_{Real}^2 )の正規分布に従います。

したがって、年金ポートフォリオが目標となる実質利回り1.7%を達成できない確率( P(r_{Real}<1.7%))は、計算以下のように計算できます。

#目標達成できない確率
pnorm(1.7/100,mean=mu_Real,sd=sigma_Real)
結果は49.8%でした。
目標を達成できない確率が約半分というのはオカシイと思われるかもしれませんが、この目標は期待リターンが1.7%を上回るようなギリギリのラインとして設定されたものなので、こういう結果になって当然です。
なお、資料には名目リターンが賃金上昇率を下回る確率(下方確率)も記載されています。
こちらは実質利回り( r_{Real})が0以下となる確率( P(r_{Real}<0))を意味するので、以下のような計算で求められます。
#下方確率
pnorm(0,mean=mu_Real,sd=sigma_Real)

計算結果は0.444(44.4%)で、上記資料と一致しています。

この確率は名目リターンが賃金上昇率を下回る確率であり、運用によって給付の伸びを賄えない状況ということです。

まとめ

年金ポートフォリオが運用目標利回りである1.7%を超えられない確率は49.8%でした。

また、名目リターンが賃金上昇率に達しない確率(下方確率)は44.4%でした。

年金に関しては、最近金融庁が示した報告書でその制度の存続性に疑問が投げかけられており、議論の的となっています。
参考記事:【年金は頼れない?】「高齢社会における資産形成・管理」を読んだあとに私たちが取るべき行動

年金制度の今後について議論する際には、本記事のような科学的・数理的検知からの判断も考慮できるとよいのではないでしょうか。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”人生100年時代の年金戦略”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/513QJpUzziL.jpg”,”/51aYTRz-7LL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E4%BA%BA%E7%94%9F100%E5%B9%B4%E6%99%82%E4%BB%A3%E3%81%AE%E5%B9%B4%E9%87%91%E6%88%A6%E7%95%A5-%E7%94%B0%E6%9D%91-%E6%AD%A3%E4%B9%8B/dp/4532358027″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”dAsUD”});

「レバレッジをかける」の本当の意味と、リスク・リターンとの関係

こんにちは、毛糸です。

先日こういった呟きをしました。

「レバレッジをかける」という言葉は、経営学やファイナンスの用語として広まりましたが、普及しすぎたためにその意味を理解しないままビジネスマンなどが誤用している例が多々あります。

FXや不動産投資はレバレッジをかけた投資の好例ですが、その意味を正しく理解できていない人もいるようです。

今回は「レバレッジをかける」とはどういうことなのかについて説明し、誤った使いかたについて指摘したあと、レバレッジとリスク・リターンの関係について述べたいと思います。


(adsbygoogle = window.adsbygoogle || []).push({});

「レバレッジかける」とはどういう意味か?

レバレッジをかける、レバレッジを効かせる、という言葉は、日常のいろいろなシーンで用いられる用語です。

本来は商学・経営学・ファイナンスで用いられる専門用語です。

レバレッジの本来の意味は、他人資本を利用することで自己資本利益率を高めることです。

これだけではイメージが掴みづらいので、例を出しましょう。
リターン(収益率)が10%の投資案件があるとします。
自己資本(元手)100万円をこの投資案件に投下したとき、リターンは100×10%=10万円です。
率に直すと、リターン10万円÷自己資本100万円=10%です。
自己資本が200万円だった場合も、金額ベースのリターンは200万×10%=20万円、率に直すと10%です。
以上の例は自己資本のみを使いましたが、他人資本を利用できる場合はどうでしょう。
利率5%で他人から資金を借り入れることが出来るとします。これが他人資本を利用するということの意味です。
自己資本100万円と、他人資本100万円の合わせて200万円をこの投資案件に投下するとき、金額ベースのリターンは200万円×10%=20万円です。
投資元本とリターンの総額は220万円です。
他人資本には利息を払って返済しなくてはいけませんから、利率5%分の5万円と借入額100万円の合わせて105万円を返済します。

したがって、他人資本を返済したあとに残る金額は220-105=115万円です。

自己資本100万円が、投資後には115万円になったわけですから、金額ベースのリターンは15万円、率に直すと15%です。

先程の「全額自己資本」のケースでは10%でしたから、他人資本を利用したことで収益率が5%高まっています

これが「レバレッジをかける」ということの具体例です。

「レバレッジをかける」とは、他人資本を利用する(≒借金をする)ことで、自己資本に対するリターンの比率を高めることです。

レバレッジをかけた投資にはいくつもありますが、たとえば不動産投資がレバレッジを利用した例です。

千万、億単位のお金は自分では用意できませんが、銀行から借り入れをすれば自己資金が少なくても不動産を購入でき、運用に成功すれば金利分の負担で高いリターンにあずかれる、というのが不動産投資のメリットです。

また、FX(外国為替証拠金取引)にもレバレッジという概念がありますが、これも全く同じです。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”No.1エコノミストが書いた世界一わかりやすい為替の本”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/513bLlKvcuL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/No-1%E3%82%A8%E3%82%B3%E3%83%8E%E3%83%9F%E3%82%B9%E3%83%88%E3%81%8C%E6%9B%B8%E3%81%84%E3%81%9F%E4%B8%96%E7%95%8C%E4%B8%80%E3%82%8F%E3%81%8B%E3%82%8A%E3%82%84%E3%81%99%E3%81%84%E7%82%BA%E6%9B%BF%E3%81%AE%E6%9C%AC-%E4%B8%8A%E9%87%8E-%E6%B3%B0%E4%B9%9F/dp/4761273321″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″}});

「レバレッジをかける」の誤用

レバレッジをかけることはビジネスを大きくするために重要な意味を持つので、その言葉はいろいろなシーンで使われます。

しかし、広く使われすぎているがゆえに、誤解を招きやすい表現でもあります。

レバレッジの本質は「他人資本の利用」なので、例えば自助努力で品質や速度を上げる、といった例でレバレッジという言葉を使うのは誤りです。

「エナジードリンクを飲んでレバレッジをかける!!」といった表現も、他人資本を使っているわけではないので、レバレッジをかけているわけではありません(厳密には、将来の元気を前借りしているという意味で、異時点間でレバレッジをかけていると言えなくもないです)。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”レッドブルはなぜ世界で52億本も売れるのか”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51SXMHAiEgL.jpg”,”/31dKQ1oGLNL.jpg”,”/51c1xDl7ltL.jpg”,”/51KlnYx-YhL.jpg”,”/61L%2B7WKsPFL.jpg”,”/41IhQQ59oDL.jpg”,”/51HGUox3l3L.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%AC%E3%83%83%E3%83%89%E3%83%96%E3%83%AB%E3%81%AF%E3%81%AA%E3%81%9C%E4%B8%96%E7%95%8C%E3%81%A752%E5%84%84%E6%9C%AC%E3%82%82%E5%A3%B2%E3%82%8C%E3%82%8B%E3%81%AE%E3%81%8B-%E3%83%B4%E3%82%A9%E3%83%AB%E3%83%95%E3%82%AC%E3%83%B3%E3%82%B0%E3%83%BB%E3%83%92%E3%83%A5%E3%82%A2%E3%83%B4%E3%82%A7%E3%83%BC%E3%82%AC%E3%83%BC/dp/4822249840″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″}});

レバレッジとリスクの関係

レバレッジとは平たく言えば「借金して投資したら自己資金に頼るよりデカく張れる」ということですが、「レバレッジをかける」ことで無条件にリターンが高められると勘違いされがちです。

レバレッジをかけると、リターンを高められる代わりに、リスクも増幅させます

また例を出しましょう。

200万円投資すれば1/2の確率で400万円、1/2の確率で40万円になる投資案件があるとします。

将来手に入る金額の期待値は1/2×400+1/2×40=220万円です。

この投資案件に自己資本200万円を投じたとき、1/2の確率で400-200=200万円のリターン(率にして100%)、1/2の確率で40-200=-160万円(率にして-80%)という結果になります。

もし他人資本を使うとどうなるでしょうか。

自己資本100万円に加え、他人資本を100万円(利率5%)で利用するとします。

このとき、1/2の確率で400万円が獲得でき、他人資本の返済105万円と自己資本100万円を引いたあとの残り195万円がリターンとなります(率にして195%)。

一方、1/2の確率で40万円しか返ってきませんので、他人資本の返済105万円と自己資本100万円を引けばリターンは-165万円(率にして-165%)となります。

まとめると

  • 自己資本200万円の場合、
    • 1/2の確率で収益率100%
    • 1/2の確率で収益率-80%
    • 期待リターンは1/2×100+1/2×(-80)=10%
    • リターンのブレ(リスク)は-80~100%
  • 自己資本100万円+他人資本100万円(利率5%)の場合、
    • 1/2の確率で収益率195%
    • 1/2の確率で収益率-165%
    • 期待リターンは1/2×195+1/2×(-165)=15%
    • リターンのブレ(リスク)は-165~195%

この例からわかることは、レバレッジをかけると、リターンが大きくなると同時に、リスクも高くなるということです。

つまり、レバレッジをかけるとは、ハイリスク・ハイリターンな投資プランにシフトすることに他なりません。

敢えてネガティブな話をするなら、上手く行かなかった場合の損失が大きくなる、ということです。

投資の結果を前もって予測することはできず、レバレッジをかけた投資が必ず実を結ぶとは限りません。

レバレッジをかけるということは、ハイリスク・ハイリターンを目指すということなのです。


(adsbygoogle = window.adsbygoogle || []).push({});

まとめ

ビジネスマンなどがよく使う「レバレッジをかける」という言葉の意味について説明しました。

レバレッジをかけるという言葉は誤用されがちです。

レバレッジはリターンを高める効果がありますが、リスクも上がるということを認識しておく必要があります。

投資において無条件にリターンを高められる「魔法」は存在しません。

きちんと勉強し、正しい理解を身に着け、リスクを適切に管理しましょう。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”道具としてのファイナンス”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/41ZWA%2Bu62KL.jpg”,”/41tOAD3uLQL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E9%81%93%E5%85%B7%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9-%E7%9F%B3%E9%87%8E-%E9%9B%84%E4%B8%80/dp/4534039484″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″}});

Warning: Trying to access array offset on value of type bool in /home/r1406503/public_html/keito.luxe/wp-content/themes/xeory_base/lib/functions/bzb-functions.php on line 299

Warning: Trying to access array offset on value of type bool in /home/r1406503/public_html/keito.luxe/wp-content/themes/xeory_base/lib/functions/bzb-functions.php on line 301
class="col-md-4" role="complementary" itemscope="itemscope" itemtype="http://schema.org/WPSideBar">