「日本株に投資すると長期的には損」は本当か?

こんにちは、毛糸です。
先日公表された金融庁の報告案「高齢社会における資産形成・管理」のなかで、日本の年金に対する不透明性が示され、国民一人ひとりが自助努力による資産運用を行うべき、ともとれるメッセージが投げかけられました。
これを読んで投資を始めようとした人の中には、こんな考えを抱いている人もいるでしょう。

日本は高齢化が進み、人口も減少している。国の借金も増え続けているし、日本株式に投資しても損をするのは目に見えているから、日本株は買わないようにしよう。

さて、この考え方は正しいのでしょうか?
資産運用の初心者におすすめの入門書『難しいことはわかりませんが、お金の増やし方を教えてください!』には、こういった考え方について、

『低成長だから、株価は下がる』というのは誤り

と解説しています。
本記事ではなぜ「日本株は下がる」と考えるのが誤りなのか、ファイナンス理論の考え方と合わせて解説します。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”難しいことはわかりませんがお金の増やし方を教えてください”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/61KYTun14uL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E5%9B%B3%E8%A7%A3%E3%83%BB%E6%9C%80%E6%96%B0-%E9%9B%A3%E3%81%97%E3%81%84%E3%81%93%E3%81%A8%E3%81%AF%E3%82%8F%E3%81%8B%E3%82%8A%E3%81%BE%E3%81%9B%E3%82%93%E3%81%8C%E3%80%81%E3%81%8A%E9%87%91%E3%81%AE%E5%A2%97%E3%82%84%E3%81%97%E6%96%B9%E3%82%92%E6%95%99%E3%81%88%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84%EF%BC%81-%E5%B1%B1%E5%B4%8E%E5%85%83-ebook/dp/B077F4SK36″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”yI0sr”});

株式市場の効率性

株式市場には膨大な数のプレーヤーが参加しており、個々の投資家が様々な思惑で株式を売買しています。
もし国家レベルで先行きが怪しくなった場合、多くの投資家はすぐさまその情報を察知し、その国の企業の株価が下がる前に投資を清算しようとします。
そうすると、需要(買い)より供給(売り)が多くなり、株価が下がります。
情報が早く伝わるほど、そしてプレーヤーが多いほど、株価は情報を折り込みやすくなり、情報を手に入れることで得られる超過リターンはなくなっていきます。
ファイナンス理論ではこれを「市場の効率性」とよび、過去から現在までに公表された情報を使って超過リターンが得られないほど効率的であることを「セミストロングフォームで効率的」といいます。
多くの研究で、株式市場はセミストロングフォームで効率的であると考えられています。
したがって、過去に公表され世間に知れ渡った情報は、すでに現在の株価に織り込み済みであると考えられます。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ウォール街のランダムウォーカー原著第11版株式投資の不滅の真理”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51j3XxuLcML.jpg”,”/51L5VguO16L.jpg”,”/51pXH1cT26L.jpg”,”/51qzhDA8N8L.jpg”,”/516KF7nD4ML.jpg”,”/51RqxJ5YdzL.jpg”,”/41Z4TQLguaL.jpg”,”/41RDCEkVSWL.jpg”,”/51ZC6wiROQL.jpg”,”/416UAK2gjbL.jpg”,”/51COLQfOYZL.jpg”,”/41wAkIpxalL.jpg”,”/517pu9qvoaL.jpg”,”/51Qd00xstPL.jpg”,”/41a6WwcjPUL.jpg”,”/41whOykxo9L.jpg”,”/51ZYk6jqWTL.jpg”,”/51JXyzvOypL.jpg”,”/51Cx1OLwZwL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%82%A6%E3%82%A9%E3%83%BC%E3%83%AB%E8%A1%97%E3%81%AE%E3%83%A9%E3%83%B3%E3%83%80%E3%83%A0%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AB%E3%83%BC%E3%80%88%E5%8E%9F%E8%91%97%E7%AC%AC11%E7%89%88%E3%80%89-%E2%80%95%E6%A0%AA%E5%BC%8F%E6%8A%95%E8%B3%87%E3%81%AE%E4%B8%8D%E6%BB%85%E3%81%AE%E7%9C%9F%E7%90%86-%E3%83%90%E3%83%BC%E3%83%88%E3%83%B3%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AD%E3%83%BC%E3%83%AB/dp/4532356873″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”0uoAM”});

高齢化・低成長な日本の先行きは株価に織り込み済み

日本が超高齢化社会であり、社会保障や企業の雇用維持に限界が来つつあることは、周知の事実です。
したがって、株式市場が効率的ならば、これらネガティブな見通しは、すでに株価に織り込まれていると考えられます。
もし織り込まれていないなら、「日本はもうダメだ」と確信する投資が日本株に売りを浴びせることで高いリターンが得られます。
しかし市場参加者は自分の信念に従い、「先は暗そう」だと考えている人は既に売りポジションを持っているもしくは投資を清算しているはずで、その投資行動の結果として現在の株価が形成されているわけですから、現在の株価に日本の暗い未来は織り込み済みなのです。

日本株は下がるのか、上がるのか

もちろん、日本の先行きに関して、さらにネガティブな情報がもたらされれば、日本株はさらに値下がりすることもあります。
しかし、こういう「予想外」の情報は、事前には予測し難いものです。
逆に、日本が今考えられているより少しはマシな社会になりそうだという見通しがたてば、株価はむしろ上がっていくでしょう。
したがって「日本は低成長だから、投資の旨味はない」という考えは、妥当ではないのです。
日本株は上がるのか、下がるのかという質問に確かな答えを出すのは不可能ですが、現在の見通しより良くなれば上がり、悪くなれば下がる、ということは言えるでしょう。

まとめ

市場の効率性という考え方に触れながら、「日本は低成長だから株価は上がらない」という考え方が適切ではないことを説明しました。
日本株が上がるか下がるかは、今の日本の将来見通しが今後好転するのか、悪化するのかにかかっています。
もし「世の中の人が考えるより確かな信念で、私は上がると思う!」と考える人が増えれば、株価は自然に上がっていくでしょう。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ウォール街のランダムウォーカー原著第11版株式投資の不滅の真理”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51j3XxuLcML.jpg”,”/51L5VguO16L.jpg”,”/51pXH1cT26L.jpg”,”/51qzhDA8N8L.jpg”,”/516KF7nD4ML.jpg”,”/51RqxJ5YdzL.jpg”,”/41Z4TQLguaL.jpg”,”/41RDCEkVSWL.jpg”,”/51ZC6wiROQL.jpg”,”/416UAK2gjbL.jpg”,”/51COLQfOYZL.jpg”,”/41wAkIpxalL.jpg”,”/517pu9qvoaL.jpg”,”/51Qd00xstPL.jpg”,”/41a6WwcjPUL.jpg”,”/41whOykxo9L.jpg”,”/51ZYk6jqWTL.jpg”,”/51JXyzvOypL.jpg”,”/51Cx1OLwZwL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%82%A6%E3%82%A9%E3%83%BC%E3%83%AB%E8%A1%97%E3%81%AE%E3%83%A9%E3%83%B3%E3%83%80%E3%83%A0%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AB%E3%83%BC%E3%80%88%E5%8E%9F%E8%91%97%E7%AC%AC11%E7%89%88%E3%80%89-%E2%80%95%E6%A0%AA%E5%BC%8F%E6%8A%95%E8%B3%87%E3%81%AE%E4%B8%8D%E6%BB%85%E3%81%AE%E7%9C%9F%E7%90%86-%E3%83%90%E3%83%BC%E3%83%88%E3%83%B3%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AD%E3%83%BC%E3%83%AB/dp/4532356873″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”8aaSi”});

ビットコインの確率分布について|期待リターン、リスク、ヒストグラム【正規分布じゃない】

こんにちは、毛糸です。

前回、Rライブラリ「crypto」を用いて、仮想通貨の価格が簡単に取得できることを説明しました。
>>仮想通貨の価格ヒストリカルデータを取得する方法|Rライブラリcryptoの使い方

今回は「crypto」を使って取得したBitcoin(BTC)の価格情報を分析します。

BTC価格の時系列データを分析することで、BTCの期待リターン、リスクが極めて高いことがわかりました。

また、ヒストグラムと「正規性の検定」により、BTCのリターンは正規分布に従わないこともわかりました。

cryptoパッケージによるBTC価格の取得とリターンのデータ

cryptoパッケージのcrypto_history()関数を用いて、BTC価格のヒストリカルデータを取得します。
>>仮想通貨の価格ヒストリカルデータを取得する方法|Rライブラリcryptoの使い方

#crypto_history(coin = NULL, limit = NULL, start_date = NULL,
#end_date = NULL, coin_list = NULL, sleep = NULL)
#仮想通貨の価格等情報を取得
#dateはyyyymmdd形式で。NULLとすると最長期間
BTC<-crypto_history(coin = "BTC",
                    start_date = NULL,end_date = NULL)
BTC価格を時系列データとして読み込みます。
BTC_price<-ts(BTC$close,start=BTC$date[1])
plot(BTC_price,type="l")
日次収益率を計算し、プロットしてみましょう。
#日次収益率
BTC_return_daily<-diff(BTC_price,lag=1)/lag(BTC_price,k=-1)
plot(BTC_return_daily,type="l")
以下ではこの日次収益率データを使って、BTCの収益率の統計分析をしていきます。

基本統計量

期待リターン(平均)

日次収益率の平均をとることで、日次期待リターンを推定できます。結果は、日次リターンが0.28%、簡易的に年率換算すると102%となりました。株式のリターンが年率5%ほどと言われていますから、驚異的な水準です。
#日次収益率の平均(期待リターン)(%)
mean(BTC_return_daily)*100
#[1] 0.2808807
#年率換算(%)
mean(BTC_return_daily)*100*365
#[1] 102.5215

リスク(標準偏差)

日次収益率の標準偏差を計算することで、日次収益率のリスクを推定できます。結果は、日次ベースの標準偏差が4.3%、簡易的に年率換算すると82%となりました。株式のリスクが年率25%ほどと言われていますから、とてつもなくハイリスクであることがわかります。
#標準偏差(%)
sd(BTC_return_daily)*100
#[1] 4.333606

#年率換算(%)
sd(BTC_return_daily)*100*365^0.5
#[1] 82.79343

歪度

歪度と尖度の計算には、「moments」ライブラリのskewness()、kurtosis() 関数を用います。
install.packages("moments")
library(moments)

分布の歪み具合を示すのが歪度です。正規分布のように左右対称な分布では、歪度は0になります。

BTC日次収益率の歪度は0.5です。歪度が正であるということは、分布のピークが左側にあり、右側の裾が広い分布であることを意味します。つまり、極端に高いリターンが出やすいと言えます。

#歪度:正規分布は0、正なら右裾が広い
skewness(BTC_return_daily)
#[1] 0.5234792

尖度

尖度は分布の尖り具合を示します。正規分布は尖度3(0とする定義もあり)であり、これより大きければ、分布は平均の周りで尖った、左右に裾野が広い分布になります。

BTC日次収益率の尖度は12であり、正規分布より極端に「尖った」、そして「裾野の広い」分布になります。つまり、極端に高い・低いリターンが出現しやすいことを意味します。

#尖度:正規分布が3
kurtosis(BTC_return_daily)
#[1] 12.9556

BTC収益率(リターン)は正規分布にしたがうか?(正規性の検定)

ファイナンス(金融工学)では、資産のリターンは正規分布に従うと仮定されることが多いです(資産価格が対数正規分布、資産価格が幾何ブラウン運動、も同様の意味です)。
BTC収益率は正規分布に従うのか、確かめてみましょう。
すでに、BTC収益率の歪度が0.5(正規分布なら0)、尖度が12(正規分布なら3)であることは確認しましたので、正規分布ではないような気がしますが、別の視点からも確認します。
本性の内容は下記記事を参考にしています。

ヒストグラム

リターンの実現値が、どの範囲でどのくらいの頻度で出現したかを見るグラフが、ヒストグラムです。

BTC日次収益率のヒストグラムを描いてみます。

正規分布のヒストグラムは左右対称のベルのような形をしていますが、BTC収益率のヒストグラムはやや右に裾野が厚く、かつ裾野が広がっている印象を受けます。

hist(BTC_return_daily,main="BTC算術日次リターンのヒストグラム",xlab="日次リターン",ylab="度数")

Q-Qプロット

Q-Qプロットは、与えられたデータがある確率分布とどれくらい「ずれているか」を図示したものです。データをQ-Qプロットしたとき、データが45度線(y=xのグラフ)に沿って並んでいれば、理論上の分布と近いという根拠になります。Rではqqnorm()関数によって、正規分布を仮定した場合のQ-Qプロットを描画できます。

BTCの日次データをQ-Qプロットしてみると、以下のように曲線を描いており、正規分布に近いとは言えません。

qqnorm(BTC_return_daily,main="BTC算術日次リターンのQ-Qプロット")

シャピロ・ウィルク検定

シャピロ・ウィルク検定は、「データが正規分布に従う」という帰無仮説に関する検定です。したがって、シャピロ・ウィルク検定で計算されたp値が小さければ、帰無仮説を棄却、つまり「データは正規分布に従わない」ということが言えます。Rではshapiro.test()を使います。
検定の結果、p値はほぼ0であり、「BTC日次収益率は正規分布に従わない」と結論付けられます。
> shapiro.test(BTC_return_daily)


 Shapiro-Wilk normality test


data:  BTC_return_daily
W = 0.87881, p-value < 0.00000000000000022

コルモゴロフ・スミルノフ検定

コルモゴロフ・スミルノフ検定は、「データが指定した確率分布に従う」という帰無仮説に関する検定です。したがって、正規分布に関するコルモゴロフ・スミルノフ検定を行ったときにp値が小さければ、帰無仮説を棄却、つまり「データは正規分布に従わない」ということが言えます。Rではks.test()を使います。
検定の結果、p値はほぼ0であり、「BTC日次収益率は正規分布に従わない」と結論付けられます。
> ks.test(BTC_return_daily, "pnorm", mean=mean(BTC_return_daily), sd=sqrt(var(BTC_return_daily)))


 One-sample Kolmogorov-Smirnov test


data:  BTC_return_daily
D = 0.11752, p-value < 0.00000000000000022
alternative hypothesis: two-sided


 警告メッセージ: 
 ks.test(BTC_return_daily, "pnorm", mean = mean(BTC_return_daily),  で: 
   コルモゴロフ・スミノフ検定において、タイは現れるべきではありません
なお、警告メッセージは同一データが存在するときに発生します。連続確率分布では同一の値が実現する確率は0なので、本来生じるべきではないというアラートですが、今回は厳密な議論をしているわけではないので、スルーします。
以上のような検討の結果、いずれの方法でも、BTC日次収益率は正規分布に従わないという結論が得られました。

ビットコインの収益率が正規分布に従わないとなにが困るか

ビットコインの収益率が正規分布に従わないということは、収益率が正規分布に従うと仮定して展開される多くのファイナンス理論の道具が使えないことになります。
たとえば、オプションの価格公式であるブラック・ショールズ式は、資産価格が幾何ブラウン運動に従うこと(つまり収益率が正規分布に従うこと)を仮定しています。
したがって、ビットコインのオプションが組成されたときに、そのオプションの価格をブラック・ショールズ式で評価するのと、意思決定を誤ります。
また、将来の投資運用の成績をシミュレーションする「投資シミュレーションプログラム」も、資産の収益率に正規分布を仮定しているため、仮想通貨投資には利用できません。

このように、確率分布が標準的なファイナンスの仮定と異なることにより、やや慎重な議論が必要になってきます。

投資においては、為替や株式等よりも変動性が大きく、また極端に高いもしくは低いリターンが出やすいという点に気をつける必要があります。

まとめ

Rライブラリ「crypto」を用いて、ビットコインの価格情報を取得し、日次リターンの分析を行ってみました。
ビットコインの収益率は極めてハイリスク・ハイリターンであり、また、ファイナンスで通常仮定される正規分布とは大きく異なる性質を持っています。

ビットコインを始めとする仮想通貨のデータを扱う際には、この分布の特性をよく踏まえる必要があります。

関連記事>>ビットコインはバブルである

参考記事


データ解析その前に: 分布型の確認と正規性の検定 #rstatsj(リンク)
Leihcrev’s memo 入門本編 8章 確率分布(リンク
統計解析フリーソフト R の備忘録頁 ver.3.1 63. 正規性の検定(リンク)
Wikipedia 歪度(リンク
Wikipedia 尖度(リンク

【投信定点観測】12週目|米中通商通商協議難航

こんにちは、毛糸です。

【投信定点観測】2019年6月第1週(スタートから12週目)の損益の報告です。

今週末における含み損益は-26,198円、損益率は-1.63%(年率-4.79%)です。

損益状況

商品ごとの時価は以下のようになりました。【投信定点観測】開始から12週間経過時の含み損益は-26,198で、先週から12,307円のマイナスです。

損益率に直すとこんな感じです。今週末の損益率は-1.63%(年率換算で-4.79%)です。

インデックス投資信託の振り返り:米中通商協議難航

米中通商協議がまとまらず、今週も米国株式を中心に広く売られる展開となっています。

アメリカの中国に対する輸入関税引き上げに伴う関係悪化を嫌気して、先進国株式と日本株式は週間騰落率マイナスとなっています。

一時は金利上昇リスクの後退により指数を押し上げてきたREITですが、長引くリスクオフ環境の影響を受け、今週はJ-REIT、G-REITともにマイナスとなりました。

今週の騰落率最下位はG-REITのマイナス2.18%でしたが、【投信定点観測】ポートフォリオ全体ではマイナス0.74%に収まっています。

投資信託自体が分散効果を享受する優れた金融商品ですが、これを複数の資産クラスに拡大することで、ポートフォリオ全体のリスクは更に低減することが出来ます。

ロボアドバイザーの振り返り:THEO(テオ)の守りの堅さ

ロボアドバイザーのTHEO(テオ)は今週+0.04%(含み損益-1.97%)、WealthNavi(ウェルスナビ)は今週-1.67%(含み損益-3.37%)でした。

【投信定点観測】開始からしばらくはWealthNaviのほうがリターンが高かったのですが、市場全体に失速感が出てからは、THEOの「守りの堅さ」が目立っています。

WealthNaviとTHEOはその投資戦略や手法に差異があり、それがリターンとリスクに現れています。
▼ロボアドバイザーTHEO(テオ)は登録はこちらから!
THEO

▼ロボアドバイザーWealthNavi(ウェルスナビ)の登録はこちらから!

WEALTHNAVI(ウェルスナビ)

アクティブファンドの振り返り:ひふみとTOPIXの差広がる

日本株式に投資するアクティブファンドひふみ投信と、インデックスであるTOPIXとの成績の差が開きつつあります。

週次の勝率でみると勝ったり負けたりですが、累積リターンで見るとひふみ投信はアクティブファンドとしての価値を十分に発揮しています。

統計的にはアクティブファンドは平均するとインデックスに勝てないという研究がありあますが、あらゆるアクティブファンドがインデックスに負ける、といっているわけではありません。

これまでの成績を見る限り、ひふみ投信は継続的にインデックスに勝てる優秀なアクティブファンドブファンドであると言っても良さそうです。

まとめ

【投信定点観測】を始めて12週、経済大国の貿易を巡り市場に暗雲が立ち込めています。

国家レベルのリスク要因は分散投資を持ってしてもなかなか低減することが難しいですが、それでも個別の資産のリスクをヘッジ出来るという意味では、投資信託による分散投資は個人投資家にとって十分魅力的な投資手法です

引き続き、投資信託による「コツコツ」積立投資で、安定的な資産形成を目指していきます。

引き続き積立投資の状況をリポートして参りますので、もしよろしければSNSでのシェアよろしくお願い致します!

長期投資は【安全ではない】ことをシミュレーションで証明する

こんにちは、毛糸です。

「長期投資は安全」というイメージを抱いていませんか?

全国銀行協会のサイト(リンク)でも、長期投資の安全性に関して以下のように書いてあります。

一時的に価格が下がっても、長い目で見れば価格が上がることもあるため、長く保有すればするほど、リスクを軽減する効果があるといわれています。

しかし、この主張は極めて誤解しやすいもので、実際にはむしろ、投資収益のリスクは長期になればなるほど大きくなります。

本記事では「投資シミュレーションプログラム」を用いて、長期投資がリスクを高めることを証明します。
参考記事:>>「投資シミュレーションプログラム」サマリー

投資の「リスク」の定義

投資におけるリスクとは、投資収益の期待値からのブレを指すのが一般的です。

もう少し踏み込んで言えば、そのブレを測る尺度が、標準偏差や分散という統計量です。

投資において「リスクが高い」とは、将来の(額もしくは率ベースの)投資収益の標準偏差が高い、ということを意味します。

この意味において、投資が長期になればなるほど、リスクは高くなります。

つまり、他の条件を一定とすれば、短期と長期の投資収益は、後者のほうが高い標準偏差を持つということです。

本記事ではこのことを「投資シミュレーションプログラム」を用いて示します。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ウォール街のランダムウォーカー株式投資の不滅の真理”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51j3XxuLcML.jpg”,”/51L5VguO16L.jpg”,”/51pXH1cT26L.jpg”,”/51qzhDA8N8L.jpg”,”/516KF7nD4ML.jpg”,”/51RqxJ5YdzL.jpg”,”/41Z4TQLguaL.jpg”,”/41RDCEkVSWL.jpg”,”/51ZC6wiROQL.jpg”,”/416UAK2gjbL.jpg”,”/51COLQfOYZL.jpg”,”/41wAkIpxalL.jpg”,”/517pu9qvoaL.jpg”,”/51Qd00xstPL.jpg”,”/41a6WwcjPUL.jpg”,”/41whOykxo9L.jpg”,”/51ZYk6jqWTL.jpg”,”/51JXyzvOypL.jpg”,”/51Cx1OLwZwL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%82%A6%E3%82%A9%E3%83%BC%E3%83%AB%E8%A1%97%E3%81%AE%E3%83%A9%E3%83%B3%E3%83%80%E3%83%A0%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AB%E3%83%BC%E3%80%88%E5%8E%9F%E8%91%97%E7%AC%AC11%E7%89%88%E3%80%89-%E2%80%95%E6%A0%AA%E5%BC%8F%E6%8A%95%E8%B3%87%E3%81%AE%E4%B8%8D%E6%BB%85%E3%81%AE%E7%9C%9F%E7%90%86-%E3%83%90%E3%83%BC%E3%83%88%E3%83%B3%E3%83%BB%E3%83%9E%E3%83%AB%E3%82%AD%E3%83%BC%E3%83%AB/dp/4532356873″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”azSuX”});

投資シミュレーションプログラム

「投資シミュレーションプログラム」は、確率論に基づくモンテカルロ・シミュレーションという手法を用いて、投資収益の将来予測をするプログラムです。
参考記事:>>「投資シミュレーションプログラム」サマリー

モンテカルロ・シミュレーションとは、コンピュータによって乱数を発生させ、将来を確率的にシミュレートし、大数の法則によって将来の期待値を算定する手法です。

「投資シミュレーションプログラム」を使えば、投資の期待リターンとリスクと投資期間を入力することで、将来の資産額を計算することが出来ます。

長期投資でリスクは低減されない

今回行うシミュレーションは、投資対象をFXとした場合(期待リターン0%、リスク10%と仮定)と、インデックス投信に分散投資した場合(期待リターン4.57%、リスク12.8%)の2つのケースについて、1年・10年・30年の各投資期間で、将来時点で確定する投資収益の期待値とリスクを計算してみます。

インデックス投信に分散投資、といってもアセット・アロケーションは無限にありますが、ここでは日本の年金運用の基本ポートフォリオと同じ資産配分で行うものと仮定します。

シミュレーション結果は以下のとおりです。

FX(期待リターン0%、リスク10%)に投資した場合

1年後

  • リターンの期待値は0%
  • リスク(標準偏差)は10%
  • シャープレシオは0
  • 1年あたりの平均リターンは0%

10年後

  • リターンの期待値は0%
  • リスク(標準偏差)は32%
  • シャープレシオは0
  • 1年あたりの平均リターンは0%

30年後

  • リターンの期待値は1%
  • リスク(標準偏差)は61%
  • シャープレシオは0.02
  • 1年あたりの平均リターンは0%
FX(期待リターン0%、リスク10%)に投資した場合、長期になってもリターンは(ほぼ)増えませんが、リスクは長期になればなるほど大きくなっていることがわかります。

インデックスに分散投資(期待リターン4.57%、リスク12.8%)した場合

1年後

  • リターンの期待値は5%
  • リスク(標準偏差)は12%
  • シャープレシオは0.4
  • 1年あたりの平均リターンは5%

10年後

  • リターンの期待値は56%
  • リスク(標準偏差)は63%
  • シャープレシオは0.8
  • 1年あたりの平均リターンは5%

30年後

  • リターンの期待値は286%
  • リスク(標準偏差)は298%
  • シャープレシオは1
  • 1年あたりの平均リターンは5%
インデックスに分散投資(期待リターン4.57%、リスク12.8%)した場合、長期になればなるほどリターンは大きくなっていますが、それに伴いリスクも大きくなっていることがわかります。ちなみに、投資のリスクとリターンの比率を示すシャープレシオは、投資が長期化するほど高まります。
上記分析に用いたRのコードは以下のとおりです。
#FX
#投資年数(自由入力)
Year<-1
#シミュレーション回数(自由入力、多いほど正確だが時間がかかる)
sample<-10000
#シミュレーション数値を格納する行列
A<-matrix(0,sample,Year+1)
#初期投資額を入力(自由入力)
initial<-100
#シミュレーション数値に初期投資額を入力
A[,1]<-initial
#期待リターン(期待収益率μ、自由入力)
mu<-0/100
#リスク(標準偏差σ、自由入力)
sigma<-10/100
#シミュレーション開始
set.seed(123)
#sampleの計算は明示せずベクトル化
for ( t in 1:Year){
    #今年の資産額=前年の資産額*(1+収益率)
    A[,t+1]<-A[,t]*(1+rnorm(sample,mu,sigma))
}
#シミュレーション結果の期待値を表示
paste(Year,"年後の資産額の平均は",mean(A[,Year+1]),"万円")
paste(Year,"年後の累積リターンの平均は",(mean(A[,Year+1])/initial-1)*100,"%")
paste(Year,"年後の累積リターンの標準偏差は",sd(A[,Year+1])/initial*100,"%")
paste(Year,"年間の1年あたり 平均収益率は",((mean(A[,Year+1])/initial)^(1/Year)-1)*100,"%")
#インデックス
#投資年数(自由入力)
Year<-1
#シミュレーション回数(自由入力、多いほど正確だが時間がかかる)
sample<-10000
#シミュレーション数値を格納する行列
A<-matrix(0,sample,Year+1)
#初期投資額を入力(自由入力)
initial<-100
#シミュレーション数値に初期投資額を入力
A[,1]<-initial
#期待リターン(期待収益率μ、自由入力)
mu<-4.57/100
#リスク(標準偏差σ、自由入力)
sigma<-12.8/100
#シミュレーション開始
set.seed(123)
#sampleの計算は明示せずベクトル化
for ( t in 1:Year){
    #今年の資産額=前年の資産額*(1+収益率)
    A[,t+1]<-A[,t]*(1+rnorm(sample,mu,sigma))
}
#シミュレーション結果の期待値を表示
paste(Year,"年後の資産額の平均は",mean(A[,Year+1]),"万円")
paste(Year,"年後の累積リターンの平均は",(mean(A[,Year+1])/initial-1)*100,"%")
paste(Year,"年後の累積リターンの標準偏差は",sd(A[,Year+1])/initial*100,"%")
paste(Year,"年間の1年あたり 平均収益率は",((mean(A[,Year+1])/initial)^(1/Year)-1)*100,"%")

考察

FXでもインデックス投資でも、投資が長期になればなるほど、リターンもリスクも大きくなることがわかりました。
本記事の主張を再度述べると、「長期投資をしてもリスクは低くならず、むしろ高まる」ということです。
ちなみに、上記インデックス投資のシミュレーションを図示すると以下のようになります。青い線の1つ1つがシミュレートした資産額の変動であり、長期になればなるほど期待値(赤線)からのブレ(リスク)が大きくなっていることがわかります。

まとめ

投資シミュレーションプログラムによる予測の結果、投資期間が長期になるほど、将来時点でのリターンのブレは大きくなることがわかりました。
つまり「長期投資はリスクを低減する」という主張は、リスクを収益率のブレと解釈する限り、正しくありません。
この点に関しては多くの文献で誤解を招く表現がされているので、十分ご注意下さい。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”GI2A5″});

仮想通貨の価格ヒストリカルデータを取得する方法|Rライブラリcryptoの使い方

こんにちは、毛糸です。

仮想通貨に再び注目が集まっています。

2017年に価格が高騰し、2018年に暴落した仮想通貨は、現代のバブルとして一躍有名になりました。
参考記事:ビットコインはバブルである

仮想通貨に関しては、その価格変動の激しさから、投機の対象ともなっていますが、適切にリスク管理しないとあっという間に資産が溶けてしまいます。
本記事では再び注目が集まっている仮想通貨に関して、統計プログラミング言語Rによる価格データの簡単な取得方法について解説します。

仮想通貨パッケージcryptoをインストールする方法

Rはライブラリと呼ばれるプログラム・パッケージを利用することで、専門的な分析を簡単に行えるようになります。
仮想通貨の価格分析をするにあたっては、cryptoパッケージが役に立ちます。
cryptoパッケージに内蔵されている関数を用いることで、仮想通貨の価格情報を簡単に取得できます(公式マニュアルPDFはこちら)。
cryptoパッケージを利用するにはお使いのPCにRがインストールされている必要がありますので、下記を参考にして環境を整えてください。

仮想通貨価格の時系列データ(ヒストリカルデータ)の入手方法

まずはじめに、cryptoパッケージ(と付随して必要な他のパッケージ)をインストールします。
Rのコンソール画面に以下のコードを入力し実行します。
install.packages("crypto", dependencies = TRUE)
しばらくの間、各種パッケージのインストールが進みます。
インストールが進んだら、cryptoパッケージを読み込みます。
library(crypto)
これでcryptoパッケージに内蔵される各種関数が使用可能になりました。
たとえば、仮想通貨のリストを入手するには、以下のコードを実行します。
#仮想通貨のリストを表示
crypto_list()
出力結果は以下のようになります。
> #仮想通貨のリストを表示
> crypto_list()
# A tibble: 2,212 x 6
   symbol name     slug      rank exchange_url                history_url                           
   <chr>  <chr>    <chr>    <dbl> <chr>                       <chr>                                 
 1 BTC    Bitcoin  bitcoin      1 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 2 ETH    Ethereum ethereum     2 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 3 XRP    XRP      ripple       3 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 4 BCH    Bitcoin… bitcoin…     4 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 5 EOS    EOS      eos          5 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 6 LTC    Litecoin litecoin     6 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 7 BNB    Binance… binance…     7 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 8 BSV    Bitcoin… bitcoin…     8 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
 9 USDT   Tether   tether       9 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
10 XLM    Stellar  stellar     10 https://coinmarketcap.com/… https://coinmarketcap.com/currencies/…
# … with 2,202 more rows

ビットコイン(BTC)の価格データからリターンとリスクを計算する

実際にデータを分析してみましょう。

ヒストリカルデータの取得

crypto_history()関数で、指定した仮想通貨の時系列価格情報を取得できます。
#crypto_history(coin = NULL, limit = NULL, start_date = NULL
#end_date = NULL, coin_list = NULL, sleep = NULL)
#仮想通貨の価格等情報を取得
#dateはyyyymmdd形式で。NULLとすると最長期間
BTC<-crypto_history(coin = "BTC",
                    start_date = NULL,end_date = NULL)
日付を指定することで、特定期間のデータを取得することも出来ます。
BTC_saikin<-crypto_history(coin = "BTC",
              start_date = "20190501",end_date = "20190530")
head()関数、tail()関数で、データの先頭と最後尾を確認できます。
#データの先頭
head(BTC,1)
#データの最後尾
tail(BTC,1)
crypto_history()で取得される情報は、時点の情報や始値、終値など、いくつかの列から構成されています。
それぞれの情報にアクセスしたければ、たとえばBTC$closeのように$マークのあとに取り出したい列のラベルを指定します。

終値を時系列データとして抽出

今回使うのはBTCの終値closeです。関数ts()にデータを入れることで、時系列(time series)データとして扱うことが出来ます。
#BTCの終値情報を時系列として取り出す。
#時系列情報の開始日をBTC$date[1]と指定
BTC_price<-ts(BTC$close,start=BTC$date[1])

価格チャート

BTC価格のチャートを描いてみます。データの図示にはplot()関数を使います。
#type="l"は線グラフ
plot(BTC_price,type="l")

BTCの日次収益率(リターン)

日次収益率を計算します。
t日目のBTC価格を\( P_t\)、収益率を\( r_t\)と表すと、
\[ \begin{split}r_t=\frac{ P_{t}-P_{t-1}}{ P_{t-1}} \end{split} \]
と計算できます。
分子は1時点前との差額を計算するdiff(_,lag=1)関数、分母は1時点前の価格を返すlag(_,k=-1)関数を用いて計算できますので、BTCの日次収益率は以下のようにして求めます。
#日次収益率
BTC_return_daily<-diff(BTC_price,lag=1)/lag(BTC_price,k=-1)
plot(BTC_return_daily,type="l")

BTCリターンの平均と標準偏差(リスク)

日次収益率の平均はmean()関数を用いて計算できます。
mean(BTC_return_daily)*100
#[1] 0.2808807
#表示は%
#年率換算では
mean(BTC_return_daily)*100*365
#[1] 102.5215
BTCの日次平均リターンは0.28%(年率換算102%)でした。この値はデータ期間によって変わります。

標準偏差はsd()関数で計算できます。

sd(BTC_return_daily)*100
#[1] 4.333606
#表示は%
sd(BTC_return_daily)*100*365^0.5
#[1] 82.79343
リスクを示す標準偏差は日次で4.33%、年率換算82.79%でした。極めてハイリスクです。

まとめ

Rパッケージcryptoを用いて仮想通貨の価格を用意に取得できることを説明しました。
今後このデータを用いて、仮想通貨に関する統計分析をシリーズでお送りする予定です。
もし面白いと思っていただけたら、SNSでのシェアをよろしくお願いします。

「投資シミュレーションプログラム」サマリー(随時追加)

こんにちは、毛糸です。

本記事は「投資シミュレーションプログラム」に関する記事のまとめページです。

「投資シミュレーションプログラム」とそれを使った各種の分析について、このページから各記事に飛ぶことが出来ます。

投資シミュレーションプログラム

投資シミュレーションプログラムVer.1.0

投資シミュレーションプログラムVer.1.0のコード例と、投資シミュレーションプログラムが用いている「モンテカルロ・シミュレーション」に関する説明は下記ページです。
>>投資シミュレーションプログラムを作ってみた【Rでプログラミング】

投資シミュレーションプログラムVer.1.1

投資シミュレーションプログラムは何千何万という膨大な数のシナリオをコンピュータの圧倒的計算力で処理するプログラムですが、Ver.1.0ではサンプルの計算をfor文を用いて行っていました。

統計プログラミング言語Rはfor文による繰り返し計算よりベクトル演算の方が高速に処理することができ、これを実装したのがVer.1.1です。
>>投資シミュレーションプログラムを高速化してみた

活用例

年金の分析

投資シミュレーションプログラムを用いて、年金積立金のポートフォリオの将来予測を行っています。積立金の100年後の状況を予測したり、1年後に損失が生じる確率が35%あることなどが明らかになりました。
今後、運用期間中に資金が出入りするような、より現実的な仮定のもとで分析を行う予定です。

FX・外貨預金の分析

FXの期待リターンの理論値を計算したうえで、それをパラメタとして投資シミュレーションプログラムを使い、FXで億り人になれる確率や破産する確率を計算しました。

レバレッジが億り人になれるキーであることが明らかになりましたが、破産確率の上昇と隣合わせであることもわかりました。
>>FXの期待リターン、億り人になれる確率、破産する確率【モンテカルロ・シミュレーション】

インデックス投資の分析

資産運用の王道、インデックス投資について、投資シミュレーションプログラムを用いた将来予測を行う予定です。

投資シミュレーションプログラムを支える技術

投資シミュレーションプログラムは、3つの技術と知識によって支えられています。
  1. 確率論・統計学
  2. ファイナンス理論(金融工学)
  3. プログラミング言語
投資シミュレーションプログラムは、確率論における「大数の法則」によって正当性が保証される「モンテカルロ・シミュレーション(モンテカルロ法)」により、将来の予測値を計算しています。
分析の対象は投資であり、金融商品です。金融商品の性質や運用戦略の策定については、ファイナンス(金融工学)の分野において知見が蓄積されています。
投資シミュレーションプログラムにおける実際の計算はコンピュータが行いますので、必然的にプログラミングのスキルが必要になります。投資シミュレーションプログラムは統計プログラミングRを用いて作成されています。
ファイナンスにおけるモンテカルロ法の活用については、下記の書籍が大変役に立ちます。

統計プログラミング言語Rによるファイナンス分析に関しては、下記書籍を読めば、Rの基本的な使いかたから、本格的な分析までを学ぶことが出来ます。

 

投資シミュレーションプログラムを高速化してみた

こんにちは、毛糸です。

先日、投資の将来予測を行うためのRプログラム「投資シミュレーションプログラム」を公開しました。
>>投資シミュレーションプログラムを作ってみた【Rでプログラミング】

このプログラムを用いて、年金の将来予測を行ったり、FXで億り人になれる確率を計算したりしました。

>>将来の年金積立金の状況と損失確率をシミュレーションしてみた【モンテカルロ・シミュレーション】

>>FXの期待リターン、億り人になれる確率、破産する確率【モンテカルロ・シミュレーション】

「投資シミュレーションプログラム」を使ってみる中で、より「速く」計算するための改善策を思いついたのでメモしておきます。

本記事では投資シミュレーションプログラム1.1(2019年5月29日現在の最新版)の内容を説明します。

Rプログラムを速くするための方法:ベクトル化

統計プログラミング言語Rは、ベクトル演算を高速で行える言語として知られています。

ここではベクトルを「数値やモノ(オブジェクト)を並べたもの」と理解しておけば十分です。

ベクトル演算が高速で行える、とは、具体的には、for文などを用いて一つ一つの対象(オブジェクト)を順繰りに処理していくよりも、ベクトルというまとまりに対して一括で処理を行うほうが速い、ということです。

投資シミュレーションプログラムでは、乱数をサンプル数×年数の数だけ発生させ、

  1. あるサンプルについて、各年の資産額をfor文で計算して
  2. その処理をサンプル数の数だけfor文で繰り返す
という、2重のfor文構造になっています。
しかし、Rはfor文よりもベクトルとして計算したほうが速いため、for文をベクトル演算で置き換えれば、高速化が可能なのです。

投資シミュレーションプログラムのベクトル化

投資シミュレーションプログラムは、年ごとに資産額を計算し、それをサンプルの数だけ繰り返すという方法をとっています。
このうち、年ごとの計算については、前年の資産額に収益率を乗じて当年の資産額を算出しているため、年ごとに資産額を計算する必要があり、for文を使うことを回避できません。
しかし、サンプル数分の繰り返しについては、サンプル一つ一つを順繰りに計算するのではなく、これをベクトル化してやることで、for文を回避することが可能です。

下記に示す投資シミュレーションプログラム1.1は資産額をベクトル化して計算することで、サンプルの繰り返し計算を回避しています。

#投資年数(自由入力)
Year<-40
#シミュレーション回数(自由入力、多いほど正確だが時間がかかる)
sample<-100000
#シミュレーション数値を格納する行列
A<-matrix(0,sample,Year+1)
#初期投資額を入力(自由入力)
initial<-2000
#シミュレーション数値に初期投資額を入力
A[,1]<-initial
#期待リターン(期待収益率μ、自由入力)
mu<-7/100
#リスク(標準偏差σ、自由入力)
sigma<-12.88/100
#シミュレーション開始
#sampleの計算は明示せずベクトル化
for ( t in 1:Year){
    #今年の資産額=前年の資産額*(1+収益率)
    A[,t+1]<-A[,t]*(1+rnorm(sample,mu,sigma))
}
#シミュレーション結果の期待値を表示
paste(Year,"年後の資産額の期待値は",mean(A[,Year+1]))

投資シミュレーションプログラム1.0と1.1の処理時間の比較

ベクトル化によりどれくらい高速化されたのか検証してみましょう。

R onlineでは実行時間が自動計測されますので、これを利用します(手持ちのPCで実行する場合はtitocライブラリを使ったりsystem.timeを使ってください)。

サンプル数100,000(10万)回のシミュレーションで、for文を使って計算するVer.1.0と、ベクトル演算を行うVer.1.1を比較すると、以下のようになりました。

投資シミュレーションプログラムVer.1.0(for文による繰り返し計算)

Absolute running time(絶対実行時間)は、17.18秒でした。

投資シミュレーションプログラムVer.1.1(ベクトル演算)

Absolute running time(絶対実行時間)は、1.46秒でした。

Ver.1.0からVer1.1に改善した場合の処理速度は1/10以上に縮まりました、驚異的な改善です。

まとめ

Rというプログラミング言語はベクトル演算を得意としており、for文をベクトル演算に書き換えられれば大幅な効率化に繋がります。

「動けばOK」という段階から一歩進んで、より速いプログラムを目指したいと思います。

本記事は、以下の書籍を参考にしました。Rを用いたデータ分析や投資意思決定に役立つ知識が豊富に紹介されており、とてもおすすめです。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”mcwYY”});

将来の年金積立金の状況と損失確率をシミュレーションしてみた【モンテカルロ・シミュレーション】

こんにちは、毛糸です。

先日発表された金融審議会市場ワーキング・グループの報告書案「高齢社会における資産形成・管理」(以下「報告書案」、外部リンク)は、老後に年金を頼り生活するという前提を否定するかのような内容と受け取られ、話題になっています。

この報告書案を読まれた方の中には「年金なんてこれからどんどん給付額が減っていくから当てにならない!」と考えている方もいらっしゃるでしょう。

実際に将来の給付額がどうなるかというのは、人口動態や賃金・物価上昇率など、多くの要因に左右されるため、現時点で確定的なことを述べることは出来ません。

しかし、年金積立金の運用という観点から、金融データと確率論に基づき年金ポートフォリオの将来をシミュレーションすることは可能です。

本記事では年金積立金の基本ポートフォリオに関する将来予測を、モンテカルロ・シミュレーションに基づいて行ってみたいと思います。
参考記事:投資シミュレーションプログラムを作ってみた【Rでプログラミング】

本記事をお読みいただくことで、将来の年金積立金がいくらになるのか、そのリスクはどのくらいか、年金運用が損失を出す確率はどのくらいかといった情報を知ることが出来ます。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”[参考文献]ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”YwNTV”});

年金積立金の基本ポートフォリオ

私たちが毎月支払っている年金保険料は、年金積立金管理運用独立行政法人(GPIF)という機関によって運用が行われています。

GPIFは年金支払のための原資を効率的に運用するため、株式や債券などのリスク資産に投資を行っています。

GPIFは年金ポートフォリオとして

  • 国内債券
  • 国内株式
  • 外国債券
  • 外国株式
の4つの資産クラスに投資を行うことを取り決めており、その割合も決まっています。以下はGPIFのサイト「基本ポートフォリオの考え方」(サイト)からの引用です。

この「基本ポートフォリオ」は、賃金上昇率+アルファを確保しつつ、リスクを最小限にして運用されることを目的としており、期待リターンは年4.75%、標準偏差で測ったリスクは年12.8%となっています。
参考記事:年金のリスクとリターンを統計プログラミング言語Rで計算してみた

今回はこのデータをもとに、将来の年金がどのくらいの規模になるのか、損失が出る確率はどのくらいなのかを計算してみたいと思います。

年金ポートフォリオのモンテカルロ・シミュレーション

年金積立金ポートフォリオが将来いくらくらいになるのか予測してみましょう。

年金運用の期待リターンは年4.57%、標準偏差で測ったリスクは年12.8%として、毎年の投資収益率が正規分布に従うと仮定した場合に、将来の年金ポートフォリオの金額を乱数を用いて予測します。

シミュレーションには「投資シミュレーションプログラム」を使います。
参考記事:投資シミュレーションプログラムを作ってみた【Rでプログラミング】

投資年数Yearは、1年、25年、50年、100年を入力し、それぞれの年数経過後の資産額をシミュレーションします。

投資の期待リターンはGPIFの基本ポートフォリオの期待リターン4.57%(4.57/100)を、投資のリスクは基本ポートフォリオのリスク(標準偏差)12.8%(12.8/100)を入力します。

#期待リターン(期待収益率μ、自由入力)
mu<-4.57/100
#リスク(標準偏差σ、自由入力)
sigma<-12.8/100

以下では1年後、25年後、50年後、100年後の将来における年金積立金の期待値と、標準偏差で測ったリスク、当初資金を下回る確率(損失確率)、損失が発生した場合の平均損失額(これを期待ショートフォールとよびます)を計算します。

なお、シミュレーションにあたって分析を単純化するために、運用以外の資金の出入りはないものとし、リバランスは考慮しないものとします。また、当初資金は記事執筆時点直近で報告された運用額である150兆6,630億円(150.6630兆円)とします。

1年後の年金のシミュレーション結果

  • 1年後の年金積立金の期待値は157兆円
  • 標準偏差で測ったリスクは19兆円
  • 損失確率は35%
  • 損失発生時の平均損失額(期待ショートフォール)は13兆円
1年後に損失が発生する確率が35%もあるのは驚きですが、損失が発生してもその期待値は13兆円なので、あまり大きな額ではありません。

25年後の年金のシミュレーション結果

  • 25年後の年金積立金の期待値は467兆円
  • 標準偏差で測ったリスクは313兆円
  • 損失確率は6%
  • 損失発生時の平均損失額(期待ショートフォール)は32兆円

25年後には年金積立金の期待値は現在の倍以上になります。

50年後の年金のシミュレーション結果

  • 50年後の年金積立金の期待値は1,422兆円
  • 標準偏差で測ったリスクは1,476兆円
  • 損失確率は2%
  • 損失発生時の平均損失額(期待ショートフォール)は39兆円
50年後に損失が発生する確率は2%であり、50年に一度と言われるような金融危機が起こらない限りは発生し得ないレベルです。

100年後の年金のシミュレーション結果

  • 100年後の年金積立金の期待値は13,389兆円
  • 標準偏差で測ったリスクは25,865兆円
  • 損失確率は0.2%
  • 損失発生時の平均損失額(期待ショートフォール)は52兆円
100年後に損失を抱える確率はほぼゼロです。

まとめと考察

投資シミュレーションプログラムを用いて、長期の年金運用の成績を予測してみました。
投資年数が長くなるほど将来の資産額の期待値は大きくなることがわかりましたが、一方でリスクも大きくなるようです。
年金運用で損失が出る確率は運用が長期になるほど低くなりますが、来年損失が出る確率は35%もあり、25年程度の運用でも6%の確率の確率で運用損が生じることもわかりました。
年金制度の将来を占うにあたり、今回の分析はやや設定を単純化しすぎていますが、たとえば今後年金運用が損失を出すようなことがあっても「統計的にはまぁ損失もありうるよね」と納得する材料にはなるのではないでしょうか。
年金制度はその存続も含め、今後も議論になるものと思われますが、多角的な視点から考えてみたいと思います。
なお、本記事の分析を行うに際して、下記の書籍を参考にしました。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”ファイナンスのためのRプログラミング証券投資理論の実践に向けて”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/41UrHrQ9vlL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%8A%E3%83%B3%E3%82%B9%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AER%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0-%E2%80%95%E8%A8%BC%E5%88%B8%E6%8A%95%E8%B3%87%E7%90%86%E8%AB%96%E3%81%AE%E5%AE%9F%E8%B7%B5%E3%81%AB%E5%90%91%E3%81%91%E3%81%A6%E2%80%95-%E5%A4%A7%E5%B4%8E-%E7%A7%80%E4%B8%80/dp/4320110447″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”S6AUW”});

FXの期待リターン、億り人になれる確率、破産する確率【モンテカルロ・シミュレーション】

こんにちは、毛糸です。

資産運用にはいろいろな手段があり、なかでも外貨預金やFX(外国為替証拠金取引)は有名どころです。

しかし、外貨預金やFX(以下FX等といいます)は、文献によっては「手を出すべきでない」投資商品として紹介されていたりもします。

たとえば『図解・最新 難しいことはわかりませんが、お金の増やし方を教えてください!』には、以下のように説明されています。

『為替が上がるか、下がるか』と、『金利が高いか、安いか』をセットで考えて、取引価格が決まっているから、買う前にどっちの通貨がお得かは言えない

外貨預金をやるのはコイントスで『表』か『裏』にお金をかけるのとほぼ一緒

 

本記事ではこの主張について詳しく掘り下げ、FX等の期待リターンについて考察したあと、それに基づく「億り人になれる確率」と「破産する確率」を投資シミュレーションプログラムを用いて計算してみます。

外貨預金・FXはなぜ魅力的なのか

FX等は、2つの収益機会にあずかれます。

ひとつは海外通貨に対して適用される高い金利収入(インカムゲイン)、もうひとつは通貨高による価値の増加(キャピタルゲイン)です。

外貨預金は通常、高金利通貨建てで設定され、高い金利収入(インカムゲイン)が得られるとされています。

またキャピタルゲインに関しても、例えば米ドル建て外貨預金をするとして、1ドル100円のときに1万ドルを預金し、引き出し時に1ドル110円になっていれば、円建てでは100万円から110万円に増えることになります。

FXも同様に、為替の変動による利益を得つつ、スワップポイントと呼ばれる金利収入が得られます。

このように、インカムゲインとキャピタルゲインが同時に得られるという魅力があるため、FX等は人気の投資となっています。

FXリターン分析の前提①:裁定取引とフォワード・パリティ

FX等の期待リターンについて考察する前に、いくつかテクニカルな前提をおきます。

今後、通貨高が見込めるような通貨があったとしましょう。つまり、キャピタルゲインが見込めそうな通貨です。

為替の世界には、将来の為替レートを現時点で「約束」する契約が存在します(通貨先物や為替予約といいます)。

もし将来、通貨高になりそうな通貨に対して、将来低いレートで買う「約束」をすることができれば、その取引を行う投資家は、将来安いレートで通貨を買い、高い市場レートで売却することで利益が得られそうです。

このような投資家の行動を「裁定」とよび、通貨は投資家の裁定によって「適正水準」に収斂します。

やや数学的な表現をすると、将来の( T)年後のスポット為替レートの期待値\(E[S_T] \)が「約束」されたフォワード為替レート\( F_T\)と異なっていれば、市場の効率性を前提として裁定が行われ、両者は一致するようにレートが変化します。つまり

\[ \begin{split} F_T=E[S_T]\end{split} \]
という等式が成り立つようにフォワード為替レート\( F_T\)が調整されます。

両辺を現在のスポット為替レート\( S_0\)で割ると

\[ \begin{split} \frac{ F_T}{S_0 }=E[\frac{ S_T}{ S_0}]=E[1+s_{0,T}]\Leftrightarrow E[s_{0,T}]=\frac{ F_T}{S_0 }-1\end{split} \]
となります。\(E[s_{0,T}] \)は為替の変化率(純額表示のキャピタルゲイン)です。

この等式をフォワード・パリティとか、為替レートの期待形成条件といいます。

 

FXリターン分析の前提②:カバー付き金利パリティ

さて、FX等で高金利通貨を買うことで、高いインカムゲインが得られ、運が良ければキャピタルゲインにもあずかれます。

しかし、このような目論見はあらゆる市場参加者(個人投資家や、証券会社などの機関投資家)が狙っているものです。

もし高い金利水準にありながら割安な通貨があれば、その通貨にはまたたく間に買いが入り、一瞬で「適正水準」にまで通貨高になります。

そうなれば、将来のキャピタルゲインの幅が縮まって、投資の旨味が小さくなりますので、投資家は早くに将来の為替レートを「約束」しようとします。

こうした取引によって、フォワード為替レートで「約束」した通貨の値上がり益は、最終的には金利差と同じ水準になるよう調整されます。

数式で表すと、スポット為替レートを\( S_0\)、フォワード為替レートを\( F_T\)、売り通貨の金利(国内金利)を\( i_D\)、買い通貨の金利(海外金利)を\( i_F\)としたとき

\[ \begin{split} \frac{ F_T}{S_0 }=\frac{1+i_D}{ 1+i_F}\simeq 1+i_D-i_F \end{split}\]
という関係が成り立ちます(右辺は近似式)。

つまり、フォワード為替レートという「約束」された為替レート(カバーされたレート)で測る通貨のリターンは、内外金利差と一致するということです。

FX等の期待リターンはゼロ

フォワード・パリティとカバー付き金利パリティを組み合わせると、FX等の期待リターンが計算できます。

FX等の期待リターンは、金利差(インカムゲイン\( i_F-i_D\))と通貨高による増分(キャピタルゲイン\( E[s_{0,t}]\))の和を意味します。

フォワード・パリティより

\[ \begin{split}E[s_{0,T}]=\frac{ F_T}{S_0 }-1 \end{split} \]
であり、

カバー付き金利パリティより

\[ \begin{split}\frac{ F_T}{S_0 }-1\simeq i_D-i_F  \end{split} \]
ですから、これらを合わせると
\[ \begin{split}E[s_{0,T}]= i_D-i_F \Leftrightarrow (i_F-i_D)+E[s_{0,T}]=0\end{split} \]
となります。第一項はインカムゲイン、第二項はキャピタルゲインを表しており、これらの和、つまりFX等の期待リターンは0であることが示されました。

以上のことをまとめると、フォワード・パリティとカバー付き金利パリティによって、FX等の期待リターンは、インカムゲインとキャピタルゲインが相殺され0になる、ということです。

以上の内容は、下記書籍により詳しい説明と数式での証明が載っていますので、合わせてご参照ください。

FXで億り人になれる確率、破産する確率

期待リターンが0のFXで十分な資産を築ける確率はどれくらいなのでしょうか。

以下では当初資金1,000万円をドル円(年あたりリスク10%と想定)で運用するとして、10年後に億り人になれる確率と破産する確率を計算します。

FXはレバレッジ取引が可能ですから、レバ1倍、5倍、10倍のそれぞれのケースを考えてみます。

本性の計算は「投資シミュレーションプログラム」を用いています。シミュレーション回数は10000回です。

  1. レバ1倍の場合、10年後の資産の期待値は1,002万円、億り人になれる確率は0%破産する確率は0%
  2. レバ5倍の場合、10年後の資産の期待値は1,018万円、億り人になれる確率は1.5%破産する確率は20%
  3. レバ10倍の場合、10年後の資産の期待値は1,866万円、億り人になれる確率は3.12%破産する確率は83%

考察

期待リターン0のFXでは、レバをかけないと億り人にはなれないことがシミュレーションで明らかになりました。
また、レバを高めることで億り人になれる確率は高まりますが、同時に破産する確率も高くなることがわかりました。

まとめ

フォワード・パリティとカバー付き金利パリティという関係式から、FX・外貨預金は理論上、期待リターンが0であることがわかりました。この前提のもとで投資を行うと、レバレッジをかけないと多大な富を築くことは出来ないことが明らかになりましたが、一方で破産の確率も高まることがわかりました。

本記事の内容は複数の仮定に基づくものであり、実際の投資収益の成否を保証するものではなく、また実際にFX等で成功していらっしゃる方々の成果を否定する意図は全くありません。また、シミュレーションはあくまで確率論に基づいた予測であることをお断りしておきます。

 

【投信定点観測】11週目|ファーウェイ・ショック

こんにちは、毛糸です。

【投信定点観測】2019年5月第4週(スタートから11週目)の損益の報告です。

今週末における投資総額は156万円、含み損益は-13,892円、損益率は-0.89%(年率-2.89%)です。

損益状況

商品ごとの時価は以下のようになりました。【投信定点観測】開始から11週間経過時の含み損益は-13,892で、先週から11,714円のマイナスです。

損益率に直すとこんな感じです。今週末の損益率は-0.89%(年率換算で-2.89%)です。

年率換算の損益率の計算式が誤っていたので、今回修正しました。

インデックス投資信託の振り返り:株式総崩れとREIT続伸

株安が止まりません。

中国通信機器メーカーファーウェイが米国市場から閉め出されるというニュースが報じられ、同社と取引のある企業の株価が下落。その不安感が相場全体に広がり暗雲が立ち込めています。

先進国株式は今週-2.16%の下落、中国を含む新興国株式も-2.80%の下落と大きなダメージです。

他方、J-REITは更に上昇し、週間+1.34%の伸びです。都市圏のオフィス需要が高水準で推移し、世界的な金利低下の流れが追い風となり、資金流入が続いているようです。

株式市場全体が悲観的なムードですが、【投信定点観測】で実践するインデックス投資は、市場の短期的な上げ下げに惑わされずに投資を続けていくことで、市場全体の成長を享受する方法です。

市場全体が下げているときは、裏を返せば安く資産を購入できるチャンスでもあります。

好景気になってから投資するのでは遅いので、是非このタイミングでインデックス投信の積立投資を初めてみてください。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”お金は寝かせて増やしなさい”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51xHIGALUZL.jpg”,”/51UFsW4HuvL.jpg”,”/51d7m7hcbYL.jpg”,”/61ULYpbutcL.jpg”,”/51uCgEZrhmL.jpg”,”/51ne7%2Bl4ysL.jpg”,”/51TjKtJWpzL.jpg”,”/51Zj-OmTSML.jpg”,”/410JAnn80uL.jpg”,”/51cjtS6tWPL.jpg”,”/61Q0Zvqja7L.jpg”,”/613B004TKQL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%81%8A%E9%87%91%E3%81%AF%E5%AF%9D%E3%81%8B%E3%81%9B%E3%81%A6%E5%A2%97%E3%82%84%E3%81%97%E3%81%AA%E3%81%95%E3%81%84-%E6%B0%B4%E7%80%AC%E3%82%B1%E3%83%B3%E3%82%A4%E3%83%81/dp/4894517833″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″}});

ロボアドバイザーの振り返り:THEO(テオ)とWealthNavi(ウェルスナビ)のリスク

ロボアドバイザーのTHEO(テオ)は今週-0.43%(含み損益-1.70%)、WealthNavi(ウェルスナビ)は今週-1.37%(含み損益-2.01%)でした。

【投信定点観測】を開始して11週目ということで、両者のリスク(リターンの標準偏差)を算出してみたところ、

  • WealthNaviのリスクは1.70%/週
  • THEOのリスクは1.59%/週
でした。
含み損益率ベースではWealthNaviの方が高いので、いまのところTHEOの方がローリスク・ローリターンであるといえます。
▼ロボアドバイザーTHEO(テオ)は登録はこちらから!
THEO

▼ロボアドバイザーWealthNavi(ウェルスナビ)の登録はこちらから!

WEALTHNAVI(ウェルスナビ)

アクティブファンドの振り返り:ひふみとセゾン、明暗分かれる

日本株式に投資するアクティブファンドとして、【投信定点観測】ではひふみ投信とセゾン資産形成の達人ファンドに投資しています。

現状、両者の明暗ははっきりしており、セゾン投信のパフォーマンスの高さが圧倒的です。

両者のリスク(リターンの標準偏差)を算出してみたところ、

  • セゾン資産形成の達人のリスクは2.10%/週
  • ひふみのリスクは1.90%/週
となっており、ひふみの方がローリスク・ローリターンです。

アクティブファンドはインデックスを上回る超過収益を得ることを目的としており、今の所、その目標は達成できていますので、今後の運用結果がたのしみです。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”いま選ぶべきアクティブ投信この8本!”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:””,”p”:[“/images/I/51yqlV5edSL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%81%84%E3%81%BE%E9%81%B8%E3%81%B6%E3%81%B9%E3%81%8D%E3%82%A2%E3%82%AF%E3%83%86%E3%82%A3%E3%83%96%E6%8A%95%E4%BF%A1%E3%81%93%E3%81%AE8%E6%9C%AC-%E4%B8%AD%E9%87%8E-%E6%99%B4%E5%95%93/dp/4534056877″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″},”eid”:”stdO3″});

まとめ

【投信定点観測】を始めて11週、市場は冷え込み続けており、投資パフォーマンスは悪化しています。

投資初期では良好な成績を収めていた株式が、一転大きく毀損しており、特定の資産クラスに資金を集中させることの恐ろしさを実感します。

投資信託は手軽に分散投資が行える優れた金融商品ですが、市場全体の変動にはどうしてもつられてしまいます。

そんな状況であっても、異なる変動性を持つ別の資産クラスに広く投資することで、資産全体の変動性を抑えることが可能です。

複数の資産クラスに分散することをアセット・アロケーション(資産配分)といいますが、投資成果の大部分はこのアセット・アロケーションによって決まるとも言われています。

アセット・アロケーションの重要性は以下の書籍でも強調されています。

(function(b,c,f,g,a,d,e){b.MoshimoAffiliateObject=a;
b[a]=b[a]||function(){arguments.currentScript=c.currentScript
||c.scripts[c.scripts.length-2];(b[a].q=b[a].q||[]).push(arguments)};
c.getElementById(a)||(d=c.createElement(f),d.src=g,
d.id=a,e=c.getElementsByTagName(“body”)[0],e.appendChild(d))})
(window,document,”script”,”//dn.msmstatic.com/site/cardlink/bundle.js”,”msmaflink”);
msmaflink({“n”:”お金は寝かせて増やしなさい”,”b”:””,”t”:””,”d”:”https://images-fe.ssl-images-amazon.com”,”c_p”:”/images/I”,”p”:[“/51xHIGALUZL.jpg”,”/51UFsW4HuvL.jpg”,”/51d7m7hcbYL.jpg”,”/61ULYpbutcL.jpg”,”/51uCgEZrhmL.jpg”,”/51ne7%2Bl4ysL.jpg”,”/51TjKtJWpzL.jpg”,”/51Zj-OmTSML.jpg”,”/410JAnn80uL.jpg”,”/51cjtS6tWPL.jpg”,”/61Q0Zvqja7L.jpg”,”/613B004TKQL.jpg”],”u”:{“u”:”https://www.amazon.co.jp/%E3%81%8A%E9%87%91%E3%81%AF%E5%AF%9D%E3%81%8B%E3%81%9B%E3%81%A6%E5%A2%97%E3%82%84%E3%81%97%E3%81%AA%E3%81%95%E3%81%84-%E6%B0%B4%E7%80%AC%E3%82%B1%E3%83%B3%E3%82%A4%E3%83%81/dp/4894517833″,”t”:”amazon”,”r_v”:””},”aid”:{“amazon”:”1251300″,”rakuten”:”1249750″,”yahoo”:”1251299″}});

引き続き積立投資の状況をリポートして参りますので、もしよろしければSNSでのシェアよろしくお願い致します!

Warning: Trying to access array offset on value of type bool in /home/r1406503/public_html/keito.luxe/wp-content/themes/xeory_base/lib/functions/bzb-functions.php on line 299

Warning: Trying to access array offset on value of type bool in /home/r1406503/public_html/keito.luxe/wp-content/themes/xeory_base/lib/functions/bzb-functions.php on line 301
class="col-md-4" role="complementary" itemscope="itemscope" itemtype="http://schema.org/WPSideBar">