セミオートマトンとオートマトン【簿記数学の基礎知識】

この記事ではセミオートマトンとオートマトンの定義について解説します。

荒っぽく言えば、セミオートマトンとは入力によって変化する機構、オートマトンとは入力によって変化し、同時に出力も行う機構です。

本記事ではさらに、オートマトンと会計システムの関係についても触れます。

続きを読む

財管一致の再定義:「財管一致の現状と課題-管理会計からの考察-」(川野2018)を読む

会計と一口に言っても、その目的はさまざまです。

なかでも、企業の活動を外部に報告する目的で行われる財務会計、社内の意思決定に利用する目的で行われる管理会計の2つは特に有名でしょう。

ある企業が財務・管理の2つの目的でデータを揃える「財管一致」いう考え方があります。

本記事では財管一致とはどういう考え方なのか、参考文献を提示しながら解説します。

続きを読む

順序群、順序環、順序体【簿記数学の基礎知識】

本記事では、順序群・順序環・順序体の定義をまとめています。

これらは群・環・体という代数構造に順序の概念を入れたものであり、これにより演算と整合的な「元の正負」を扱えるようになります。

元の正負は、複式簿記における借方と貸方の概念に繋がります。

続きを読む

経理職員はAIに仕事を奪われるのか?

こんにちは、毛糸です。私は上場企業の決算を支援する仕事をしています。

決算や経理というと、最近は「AIで仕事を奪われるのではないか」という声がよく聞かれます。

本記事ではその不安について深掘りしていきたいと思います。

続きを読む

簿記会計の公理を考えると何が嬉しいのか?

このブログでは複式簿記と会計の公理についてたびたび取り上げています。

1960年頃から続く公理に関する研究や、最近提示された新しい公理をもとに、私が考案した公理も紹介しました。

本記事では、そもそもなぜ、簿記や会計の公理を考えるのか、公理を示すことでどんないいことがあるのか、考察します。

復習:公理とは何か

まず初めに、公理とはなにか復習しておきましょう。

公理とは、ある数学概念を定義する際に用いる、要請や主張のことです。

「こういう性質を満たすものを、ほにゃららと定義します」といったときの「こういう性質を満たす」という主張が公理です。

公理は、数学的な議論の出発点となる共通の了解事項ともいえます。公理には「それはなぜか」という問いかけの無限遡及を防ぐ効果もあります。

概念の定義に関する要請ですから、それが正しいかどうか、証明する必要はありません。

【参考記事】公理とはなにか。証明不要の命題がもつ「論理の力」について

簿記・会計の公理とは何か

簿記・会計の公理とは、簿記・会計の定義をする際に用いる要請・主張のことをいいます。

簿記・会計の公理を示すということは、簿記・会計の定義として満たすべき性質に合意をとるということであり、逆に、公理を満たすものならなんでも簿記・会計として認めてしまおうということを意味します。

例えば、我が国が誇る会計研究者の井尻先生は1968年の著書の中で、会計の公理として①支配の公理、②交換の公理、③数量の公理を提示しました(もっとも、これら公理からなにか命題を導くことはしなかったようですが…)

簿記・会計の公理を考える意義

簿記・会計は社会で広く用いられる概念であり、既にその重要性は十分認識されています。

そんな中、簿記・会計の公理を考えることに、一体どんな意義があるのでしょうか。

議論の前提を揃える

簿記・会計の公理を定めることで、簿記・会計の定義が決まります。

公理は議論の出発点です。簿記・会計の公理に同意するならば、簿記・会計に関するすべての議論は、その公理を出発点にできます。

公理を満たしているか確認するだけでよいので、「簿記・会計とはそもそも何なのか」「何であるべきなのか」という哲学的な問いかけに真っ向から挑むことなく、簿記・会計に関する有用な議論を進めることができます。これは重要なメリットです。

もちろん、簿記・会計の公理に同意するか否か、という議論は必要です。公理やそこから演繹される命題が、既にある簿記・会計の性質に反するのであれば、そのような公理には同意できないでしょう。

例えば、貸方借方に対応する概念がないとか、仕訳の足し算が仕訳の形をしていないとか、そういう状況を生むのであれば、そんな公理には同意できません。

しかしひとたび簿記・会計の公理に同意したならば、すべての議論はその公理を前提として進みます。

ちょうど「確率とは何なのか」という哲学的な問いかけに対して、コルモゴロフの公理がその問いかけを回避する道筋を示したように、簿記・会計の公理も「それ以上は追及不要」な議論の出発点を提供します。

 

議論の範囲を明確にする

公理から導かれる性質は、公理を満たすどんなものに対しても成り立つ普遍的なものです。簿記・会計の公理を与え、その公理から何がいえるかを調べることで、簿記・会計に一般に成り立つ性質を特定できます。

簿記・会計の公理から演繹される命題はすべて、簿記・会計の性質です。

考察の対象が行列簿記でも矢印簿記でも、簿記の公理さえ満たしていれば、公理から導かれる命題はすべて成り立ちます。考察の対象が財務会計でも管理会計でも、会計の公理さえ満たしていれば、公理から導かれる命題はすべて成り立ちます。

もちろん、現実にある簿記・会計の諸問題がすべて、公理から演繹される命題として述べられるわけではないはずです。

例えばRenesの公理私の公理では、「取得原価主義と時価主義のどちらが優れているか」という問いに対して、答えを用意できません。なぜなら、それらの公理は簿記・会計の抽象的な構造を規定するものであって、具体的な会計のあり方という現実問題を射程にしたものではないからです。

公理からは演繹できない問題は、簿記・会計の抽象的な構造の問題ではないといえます。これは確率の公理において、確率測度を具体的にどう定義するかという問題に踏み込まないのと似ています。それはあくまで現実の出来事をどうモデル化するかという問題です。

議論の出発点として簿記・会計の公理を示すことで、そこから演繹される命題は簿記・会計の構造から導かれる命題であると断言できます。逆に、簿記・会計の公理に定められていない主張を議論に付け加える必要があるならば、それは(当初合意した)簿記・会計の定義を拡張しているということになります。

導きたい命題のために定義や命題を付加することは自由です。群の定義に交換法則を追加しアーベル群を定義することで、より豊かな数学を展開できるのと同じです。

大切なのは、どこまでを共通の了解事項として合意したのか、それを明確に示すことです。

 

簿記・会計を抽象化する

簿記・会計の公理が与えられたとき、その公理を満たすものは、たとえどんなに「会計っぽくない」ものであっても、簿記・会計であると定義することになります。

公理という「簿記・会計が否かの判断規準」を示すことによって、一見して異なる対象に同じ構造を見出すことができます。簿記・会計を抽象化しているとも言えます。

概念の抽象化は公理の重要な利点の一つです。

ここで位相空間にちなんだ例を示します。3つの元しか持たない集合上で連続写像を定義できるという例に、概念が抽象化されるとはどういうことかを感じ取ってほしいと思います。

例:3つの元からなる集合上の連続写像

私たちは連続写像という言葉について、隙間なく埋まった空間と、その上の切れ目ないグラフをイメージするでしょう。逆に、飛び飛びの値を取る有限集合上では、連続写像が定義できるとは信じられません。

しかし、開集合の公理によって、有限集合に開集合を定めることで、有限集合の上の連続写像を定義することができます。

トランプの絵札(ジャック\(J\)、クイーン\(Q\)、キング\(K\))の集合\(S=\left\{J,Q,K\right\}\)に対して、開集合全体の集合\(\mathbb{O}\)を

\begin{equation} \begin{split}
\mathbb{O}=\left\{ \left\{ ~\right\},\left\{ Q\right\},\left\{J,Q \right\},\left\{ Q,K\right\},\left\{J,Q,K \right\}\right\}
\end{split} \end{equation}
と定めると、\(\mathbb{O}\)は開集合の公理を満たすことがわかります。

そこで写像\(f:S\to S\)を

\begin{equation} \begin{split}
f(J)=K,f(Q)=Q,f(K)=J
\end{split} \end{equation}
と定めると、この写像は連続写像の定義を満たしていることが確かめられます(詳細は参考文献をご覧ください)。

この例を通して伝えたいことは、公理を定めることによって概念が抽象化され、世界が広がっているということです。

有限集合上で連続写像を考えるというのはイメージしづらいことですが、公理を満たすような開集合を考えることができれば、たとえイメージと異なっていても、連続写像を定義できるのです。「開集合」「連続写像」の具体的イメージから離れ、概念を抽象化しています。

このように、概念を抽象化することで、一般性の高い性質を導くことが可能になります。

そして、簿記・会計を抽象化することで、以下のようなメリットが生まれます。

抽象化のメリット①具体的な実務から離れて、課題を解決できる

簿記や会計というのは、実務的・具体的な姿を伴っています。会計システムは各社で様々なものを利用していますし、会計にも多くの基準や指針が存在します。

それらの具体的なオブジェクトを、具体的なレベルで解決するのが、会計実務家の仕事です。

しかし、会計実務における課題の中には一般的なものも存在します。「どの会社もおんなじような課題持ってるんですよね」という話がよく聞かれるように、具体的な現象は異なっていても「根っこは同じ」な問題は数多くあります。

このような場合、具体的な簿記・会計を離れ、抽象的なレベルに議論のフィールドを移すことで、具体的な課題を解決する緒になります。

抽象化のメリット②未知の簿記・会計を見つける

これと同様に、簿記・会計の公理を与えることによって、私たちが今まで簿記・会計とは考えてこなかった対象が、実は簿記・会計と同じ構造を持っていることに気づくかもしれないのです。

それが簿記・会計を抽象化するということであり、未知の簿記・会計を見つけるということです。

まとめ

この記事では簿記・会計の公理を考える意義について述べました。それは、

  1. 議論の前提を揃える
  2. 議論の範囲を明確にする
  3. 抽象化し、未知の簿記・会計を見つける

ということでした。

これらは簿記・会計の構造を論じる際に重要な役割を果たすと私は考えます。

簿記・会計の公理の重要性はまだ十分に認識されていないようなので、継続的に発信していこうと思います。

参考文献

そもそも数学における公理とは何なのか、定義とはどう違うのか、ということについては、以下の記事で詳しく述べています。
公理とはなにか。証明不要の命題がもつ「論理の力」について

簿記・会計の公理に関する研究があまり活発でない理由については、以下の記事で考察しています。
会計の公理的理論が普及していない理由を考える

記事の中で述べた井尻の3公理は、以下の書籍で詳しく論じられています。

トランプの絵札の集合で位相を考える、というお話は、以下の書籍に載っています。公理による概念の抽象化がどんな可能性を秘めているのか、ストーリーで明らかになるでしょう。

公理とはなにか。証明不要の命題がもつ「論理の力」について

本記事では「公理 axiom」とは何かを解説します。

大学に入って学ぶ 抽象的な数学の中で、私たちはいくつかの公理を学びます。しかし公理を考える意義や、定義という言葉との違いについて、詳しく習う機会は少なく、曖昧な理解で済ませがちです。

本記事では公理とは一体なんなのか、理解に役立つ参考文献を挙げながら解説します。

続きを読む

複式簿記における4つの会計等式(試算表等式、資本等式、損益等式、貸借対照表等式)

この記事では複式簿記において成り立つ4つの会計等式について解説します。

シェアーが提示した試算表等式を数学的な等式として提示し、そこから資本等式・損益等式・貸借対照表等式がどう導かれるかを解説します。

本記事の内容は以下の書籍 上野(2019) を参考にしています。

用語の定義:財産と資本、その内訳

まず本記事で用いる用語の定義を行います。

19世紀の会計学者シェアーは、複式簿記の勘定科目は大きく分けて2種類あると考えました。ひとつは「財産」勘定、もうひとつは「資本」勘定です。

「財産」勘定は積極財産と消極財産からなります。積極財産とは資産のこと、消極財産とは負債のことです。財産とは積極財産(正の財産)から消極財産(負の財産)を控除したものであり、純財産とよんだほうがピンとくるかもしれません。

「資本」勘定は純財産としての元手(もとで)とその増減から構成されます。純財産の増減とは損益のことであり、損益を除く株主資本全体が狭義の資本です(現代ではこれ以外の純資産項目もありますが、本記事ではそれも狭義の資本に含めます)。

以上を踏まえると、複式簿記における「財産」「資本」の内訳は、以下の5つの要素から構成されているといえます。

  • \( A\):資産(積極財産)
  • \( P\):負債(消極財産)
  • \( K\):純資産(資本、除く増減分)
  • \( V\):費用(資本増分)
  • \( G\):収益(資本減分)

以下ではこれらを用いて、複式簿記において成り立つ4つの等式をみていきます。

試算表等式

試算表等式は、他の3つの試算表を導くための基本となる等式であり、借方科目の合計は貸方科目の合計に等しいという主張です。

\( A,P,K,V,G\)に関する以下の等式を試算表等式といいます。

\begin{equation} \begin{split}
A+V=P+K+G
\end{split} \end{equation}

この等式はシェアーが「貸借対照表等式」と呼んだものですが、現代の言い方では試算表等式として理解されています。

この等式は残高試算表の借方合計と貸方合計が一致するという性質を数式で表現したものです。つまり、以下のような試算表において成り立つ貸借対照の原理を数式で表したものと言えます。

\[ \begin{array}{cr|cr} \hline
資産 & A & 負債 & P\\
& & 純資産 & K\\
費用 & V & 収益 & G\\
\end{array}\]

簿記代数の基礎概念であるバランスベクトルは、試算表等式を含む概念です。バランスベクトルから試算表等式を作ることが出来ます。

この記事では\( K\)を、資本全体のうち増減分\( V,G\)を除く部分と定義しましたが、仮に\( K\)に増減分を含めるなら、資本増減に関しても純増減に対応する項目(つまり当期純損益)を含める必要があります。

 

資本等式

資産(積極財産)と負債(消極財産)の差額は、資本に等しいという等式を、資本等式といいます。

\begin{equation} \begin{split}
A-P=K+G-V
\end{split} \end{equation}

資本等式は、左辺に「財産」勘定が、右辺に「資本」勘定がまとまっており、「財産=資本」という関係式を表しています。左辺は資産(積極財産)と負債(消極財産)の差額(純財産)であり、右辺は当期に増減した部分を含む資本を意味します。

資本等式は、数学的には試算表等式\( A+V=P+K+G\)において費用\(V \)と負債\( P\)を移項したものです。

損益等式

純財産から資本を差し引いたものは資本の増減に等しい、という等式を、損益等式といいます。

\begin{equation} \begin{split}
A-P-K=G-V
\end{split} \end{equation}

左辺をBS科目の合計、右辺をPL科目の合計と解釈することも出来ます。

ある会計期間の期首(添字\( \mathrm{ini}\)で表す)においてはPL科目の金額は0なので、損益等式は\( A_{\mathrm{ini}}-P_{\mathrm{ini}}-K_{\mathrm{ini}}=0\)と表せます。期末(添字\( \mathrm{end}\)で表す)には\( A_{\mathrm{end}}-P_{\mathrm{end}}-K_{\mathrm{end}}=G-V\)という損益等式が成り立ちます。

期首と期末の差分を\( \Delta\)という記号を用いて書くと、上記2つの損益等式の差から

\begin{equation} \begin{split}
\Delta A-\Delta P-\Delta K=G-V
\end{split} \end{equation}
という表現が得られます。左辺のBS科目、右辺のPL科目を便宜的に1つの変数としてまとめると
\begin{equation} \begin{split}
\Delta \mathrm{BS}=\mathrm{PL} \end{split} \end{equation}
という等式が得られます。この等式を使って「BSの微分はPLである」という主張が得られます。

 

貸借対照表等式

資本増減\( G-V\)を資本\( K\)に繰り入れた\( K+G-V\)を、新たに資本\( K^*\)と定義し直します。このとき、資産(積極財産)\( A\)は負債(消極財産)\( P\)と純資産(資本)\( K^*\)の和に等しくなります。これを貸借対照表等式といいます。

\begin{equation} \begin{split}
A=P+K^*
\end{split} \end{equation}

この等式は貸借対照表において「資産=負債+純資産」という等式が成り立つことをいっています。

\[ \begin{array}{cr|cl} \hline
資産 & A & 負債 & P\\
& & 純資産 & K^*
\end{array}\]

\( K\)に資本増減分を含めている場合には、「資本増減\( G-V\)を資本\( K\)に繰り入れた\( K+G-V\)を、新たに資本\( K^*\)と定義し直す」という条件なしで、貸借対照表等式\( A=P+K\)が成り立ちます。

まとめ

本記事では、複式簿記において成り立つ4つの基本的な会計等式、すなわち

  • 試算表等式
  • 資本等式
  • 損益等式
  • 貸借対照表等式

について説明しました。いずれも複式簿記において成り立つ重要な性質であり、各等式から発展的な命題を得ることもできます。

試算表等式は会計等式の出発点としてシェアーが提示したそうです。複式簿記の基礎固めとして偉大な貢献だと感じます。

参考文献

本記事は以下の書籍の第1章「シェアーの物的二勘定学説」を参考にしました。

こちらの書籍は、600余年の歴史をもつ複式簿記の理論学説の中から、歴史的に特に重要なものを解説しています。いわゆる学術書ですが、興味がある方はきっと楽しめるでしょう。

 

本記事と関連する記事として、以下もぜひご覧ください。

【君の知らない複式簿記4】簿記代数の教科書『Algebraic Models For Accounting Systems』とバランスベクトル

【君の知らない複式簿記5】簿記とベクトル、行列、そしてテンソルへ

【君の知らない複式簿記 補遺】BSの微分はPLである、とはどういうことか

【君の知らない複式簿記 補遺】シェアーによる借方・貸方の説明と矢印簿記

100年前の会計研究者シェアーは、複式簿記の貸方借方について、「貸方は出発点、借方は到達点」であると説明しました。

実はこの表現、このブログでも取り上げた、矢印簿記の説明ととても良く似ています。

本記事では複式簿記の始点・終点としての貸方借方、そして矢印簿記との関係性について解説します。

この記事で考察するシェアーの主張は、下記の書籍 上野(2019)から引用しています。

シェアーの借方・貸方の説明

上野(2019)第1章は、19世紀の会計学者シェアーの学説から始まります。シェアーは簿記の教育者であり、簿記の構造の研究者でした。

シェアーは簿記を「資本循環の歴史記述」と位置づけました。ここで資本とは事業開始当初の純財産と、企業活動によってもたらされたその増減を指します。

資本を構成する積極財産(資産)と消極財産(負債)は、交換や変形によってさまざまに変化(転化)し循環します。複式簿記はその循環というある種の「運動」の様子を記録する機構です。

シェアーは複式簿記の基本概念である貸方借方を以下のように説明しています。

個々のすべての転化過程は,ある形態の財が他の形態の財に変化することであって,出発点と終着点等を有する運動である。すべてこれらの運動の出発点は,ある勘定の貸方であり,目標および終着点は,他の勘定の借方である

なかなか難しい表現ですが、ごく簡単に言えば「企業の活動を複式簿記で表すとき、貸方は出発点、借方は終着点を意味する」といったところでしょうか。

この「貸方は出発点、借方は終着点」という表現は、矢印簿記につながっていきます。

 

矢印簿記の復習

矢印簿記は、ある仕訳を矢印で表現する、複式簿記の一形態です。矢印簿記では、貸方科目に対応する頂点から、借方科目に対応する頂点に向けた矢印として、仕訳を表現します。仕訳の有向グラフによる表現、とも言い換えられます。

例えば「固定資産1000を現金で購入した」という取引を考えてみます。この取引を仕訳で表現すると

\[\begin{array}
\mbox{(借)}&\mbox{固定資産}&1000&/\mbox{(貸)}&\mbox{現金}&1000\\
\end{array}\]
のようになります。これを「貸方科目から借方科目への矢印」として表してみると、以下のような図が描けます。

仕訳の有向グラフ

○で囲われた勘定科目の位置関係は気にしません。「現金」勘定と「固定資産」勘定の2つの○が左右逆でも、「現金」から「固定資産」に向けて矢印が惹かれていれば問題ありません。あくまで仕訳を「貸方科目から借方科目への矢印」で表すことが重要です。

シェアーの貸方借方の説明と矢印簿記の整合性

シェアーの主張は「出発点は貸方、終着点は借方である」という内容でした。これはまさに矢印簿記のルール「貸方科目から借方科目への矢印」と完全に整合しています。

貸方科目を出発点(始点)、借方科目を終着点(終点)とすると、その間を結ぶ矢印が引けます。シェアーの説明はまさに、複式簿記のビジュアル的に表現したものと言えるでしょう。

シェアーが矢印簿記や有向グラフをイメージしていたかは、定かではありません。少なくとも上野(2019)では矢印簿記に関する言及は見られません。

また、出発点・終着点という言葉は、必ずしも仕訳の貸借科目のことを指しているわけでもありません。むしろシェアーは財産勘定と資本勘定に関する貸借という、より大局的な構造の話を強調したかったと思われます。

しかし、シェアーの著書で述べられた「貸方始点、借方終点」という表現はまさに、現代において注目される矢印簿記の基本ルールそのものなのです。

シェアーの著書は1922年発刊、実に100年前の本です。その時代から変わらず認識される「仕訳の向き」に関する考え方は、複式簿記の本質の一つなのかもしれません。

参考文献

本記事では以下の書籍の第1章「シェアーの物的二勘定学説」を参考にしました。こちらの書籍は、600余年の歴史をもつ複式簿記の理論学説の中から、歴史的に特に重要なものを解説しています。いわゆる学術書ですが、興味がある方はきっと楽しめるでしょう。

 

矢印簿記については、こちらの記事に詳しく解説していますので、ご覧ください。
【君の知らない複式簿記6】矢印簿記で仕訳をビジュアライズ


その他の【君の知らない複式簿記】シリーズはこちらからどうぞ

複式簿記会計の公理:ひとつの提案として

簿記・会計の公理に関しては、このブログでも何度か取り上げています。

【参考記事】簿記・会計の公理化に挑んだ天才たち複式簿記会計の公理:Renes(2020)の紹介

ただ、個人的な印象として、Ijiriの公理は複式簿記の重要な命題を導くには少なすぎ、Mattessichの公理は複雑過ぎます。

Renes(2020)の公理はシンプルかつ重要な点を押さえているように思えますが、いくつか気になる点があります。

【参考記事】Renesの簿記公理に関する論点:企業の活動と会計測度について

この記事ではRenesの公理を踏襲しつつ、Rambaud et al.(2010)の基本的なフレームワークを踏襲した、オリジナルの公理を提示します。

複式簿記の公理(定義)

\( R\)を環、\( M\)を\( R-\)加群、\( n\)を自然数、\( \bigoplus_n R\)を自由加群とする。加群準同型

\begin{equation} \begin{split}  \sigma:\bigoplus_n R\to M\end{split}\end{equation}
の核\( \mathrm{ker}(\sigma)\)を\( \mathrm{Bal}_n^\sigma(R)\)と書き、これをバランス加群とよぶ。

バランス加群\( \mathrm{Bal}_n^\sigma(R)\)とその上の演算を複式簿記という。

 

解説

環\( R\)は貨幣単位を表します。環上の加群を定義するための基礎となる環です。

自然数\( n\)は自由加群のランクです。これはのちに定義される複式簿記会計における勘定科目の数に対応しています。

自由加群はベクトル空間の一般化であり、複式簿記における仕訳や試算表などの対象(バランスベクトル)の集合のもとになります。

自由加群\( \bigoplus_n R\)から\( M\)への加群準同型\( \sigma\)について、核\( \mathrm{ker}(\sigma)=\left\{ r=\bigoplus_n R|\sigma(r)=0_M\right\}\)の元は「写像\( \sigma\)で送った先が\( 0_M\in M\)であるような元の全体」です。\( \sigma\)として例えば、\( r=r_1\oplus\cdots\oplus r_n\in\bigoplus_n R\)の要素を足し上げる写像

\begin{equation}
r=r_1\oplus\cdots\oplus r_n\mapsto \sum r_i
\end{equation}
を考えます。これはRambaud et al.(2010)でも用いられている写像で、「借方合計-貸方合計=0」という複式簿記の原理に対応しています。この記事で提示する公理は、\( \sigma\)で送った先が適当な\( R-\)加群\( M\)の単位元になるように条件を一般化しています(これが上手くいくかは検討中です。テンソル簿記を考えるときはMを適当な自由加群として与えるのがよさそうです)。

環\( R\)と加群準同型\( \sigma\)が文脈から明らかなときはバランス加群を\( \mathrm{Bal}_n\)と書いてもいいでしょう。

 

複式簿記会計の公理(定義)

\( \Omega\)を集合、\( \mathcal{A}\)を有限集合の族とし、\(A \in\mathcal{A}\)の要素の数を\( |A|\)と書く。写像

\begin{equation} \begin{split}
\C :\Omega\times \mathcal{A}\to \mathrm{Bal}_{|A|}
\end{split} \end{equation}
が存在するとき、\( C \)を会計写像とよび、\( \left( \alpha ,\mathrm{Bal}_{|A|}\right)\)を複式簿記会計とよぶ。

解説

\( \Omega\)は会計報告の対象となる集合です。企業の経営活動、取引ともいいます。

\( A\in\mathcal{A}\)は勘定科目の集合です。

\( C \)は写像としての会計です。企業が取引\( \omega\in\Omega\)を行い、それを勘定科目の集合\( A\in\mathcal{A}\)を用いて会計的に表現すると、\( \C(\omega,A)\in\mathrm{Bal}_n\)が得られるという枠組みを表しています。同じ取引であっても、使用する勘定科目が異なれば、当然仕訳が変わります。会計写像\( C\)の定義域に\( \mathscr{A}\)が入っているのはそういう事情を反映したものです。

 

検討事項

この公理はRenes(2020)の公理とRambaud et al.(2010)の簿記代数の概念を混ぜたものです。Renes(2020)の公理を拡張したものとして考えましたが、きちんと一般化されているかどうかはもう少し詳しく調べなくてはいけません。

仕訳や試算表の貸借が一致するという性質はバランス加群からすぐに出ます。逆仕訳や「仕訳なし」の存在も同様です。しかし、この公理から複式簿記と会計の種々の性質が導けるかどうかについても、検討していない部分があります。例えばクリーンサープラス関係が成り立つのか、とか、行列簿記はこの公理を満たしているか、などです。

簿記と会計を分けて定義したのは、多分オリジナルの着眼点です。「会計は写像である」という言葉はよく知られていますが、数学用語として明確に定義している例は多くないように思います。公理として与えた会計写像が、現実世界の会計基準を上手く言い表せているのかも、要検討です。

参考文献

本記事の内容はRambaud et al.(2010)で提示されたバランス加群の概念に大きく依っています。簿記の代数構造として、環上の加群は重要だと考えています。

Renes(2020)の公理は以下の記事をご覧ください。

複式簿記会計の公理:Renes(2020)の紹介

Renesの簿記公理に関する論点:企業の活動と会計測度について